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ABSTRACT. Current literature on land use highlights the considerable methodological challenges in predicting how land will be used 
in the future. This paper addresses one of these challenges, namely the restrictive nature of the mono-class assignment, in which a spa- 
tial unit has only one elementary label at a time. We apply the multi-label concept in which a unit may have several elementary labels. 
For instance, a spatial unit may belong to residential and commercial classes at the same time. Classes in land use may be correlated, 
and taking into account their correlation may improve the land use changes prediction. For instance, a spatial unit has more chance to 
be, or to evolve to a residential unit if it is already commercial. The applied model achieves very promising results, indicated by values 
of 0.923 and 0.910 for precision and recall, respectively. The application described in this paper demonstrates the advantages of model- 
ling the dependence among the labels for predicting the land use change. 
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1. Introduction 

Land use change has been extensively studied over the la- 
st 40 years (Lee, 1994, 1973; Turner et al., 1995; Watson et al. 
2000; Green et al., 2002; Foley et al., 2005; Verburg, 2006; 
Brown et al., 2013). Since land use change can affect critical 
environmental processes such as water quality (Tong and Ch- 
en, 2002; Tang et al., 2005), biodiversity (Reidsma et al., 20- 
06), regional climate dynamics (Watson et al., 2000), food se- 
curity (Ericksen et al. 2009; Tayyebi et al., 2016a, b), and hy- 
drological processes (DeFries and Eshleman, 2004), to name a 
few, the key aim of a land use change model is to predict the 
evolution of landscape changes in the future to support deci- 
sion making, like community land use planning (Veldkamp 
and Lambin 2001; Verburg et al. 2004; Platt 2004; Song et al., 
2015). Experts from different disciplines (computer science, 
engineering, geography, landscape ecology, and others) have 
contributed to this field and have applied several methods (Pi- 
janowski et al., 2002, 2010). In the last two decades, machine 
learning techniques have been introduced to predict changes 
in land use as the process is known to be complex, nonlinear 
and large databases now exist that assist in quantifying chan- 
ge. For example, several modelers, Li and GarOn Yeh (2004) 
and Basse et al. (2014), have discussed the advantages of us-  
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ing advanced data mining tools for land-use modelling. They 
all describe how to build a functional relationship (or decision 
function) that captures the pattern of the land-use changes wh- 
ich is then used to mimic the evolution of land use over time 
scales that matter. Traditionally, single-label learning methods 
were used to model such patterns and their dynamics. These 
methods assign a single label to each spatial unit. However, 
this is not practical because mixed use of land is currently qu- 
ite common (Omrani et al., 2015a, b) and this information is 
often considered in land use planning decisions. For exam- 
ple, urban and industrial areas may intermingle, agricultural l- 
and may be adjacent to a forest, and the like (Tayyebi and Pi- 
janowski, 2014). A more detailed classification would be desi- 
rable (Valipour et al., 2013). The multi-label concept allows 
us to assign to each cell (also known as “example”, “observa- 
tion” or “instance”) a set of target labels. Unlike single-label 
learning (Schneider and Pontius, 2001), multi-label learning 
assumes that labels are not mutually exclusive, and a cell of 
land may be associated with several labels simultaneously. For 
instance, a cell may belong to residential and commercial cla- 
sses at the same time. Several recent applications confirm that 
multi-label modelling is more relevant for complex phenome- 
na by providing a finer and more realistic description. 

Multi-label classification is also appropriate when the re- 
solution of the data is not sufficiently high, when the cells are 
too large (Briassoulis, 2000), or when they contain borders of 
clearly delimited areas that are subject to different use. Multi- 
labeling approach has been used in other related disciplines. 
For example, Jones et al. (2011) applied multi-label classifica-  
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tion to model the distribution of multiple species in a landsca- 
pe. This distribution plays a key role in creating reserves for 
species conservation, predicting the effects of ecological cha- 
nge, and testing ecological theory. Yang et al. (2012) applied 
multi-label classification to environmental modelling in rela- 
tion to sustainable flood retention basins.  

In multi-label learning framework, classes are usually co- 
rrelated: one label appears with another more or less frequent- 
ly than what independent assignment of labels would imply. A 
key challenge for a multi-label learning method is to exploit 
the information about the correlation among different classes. 
For example, a cell is likely to be labeled as urban if it belon- 
gs to class “road”. 

Although the issue of dependence among classes has sho- 
wn considerable merit in several applications (Herold et al., 
2005), but until now, no studies have applied it in land use ch- 
ange science within a framework of multi-label learning. The- 
refore, this paper applies for the first time the multi-label con- 
cept to land-use change with dependence among labels adapt- 
ed to make a prediction for land use change. In this paper, we 
study land use in the Grand Duchy of Luxembourg. The cells 
used are squares of 1 hectare each; there are 255,698 of them. 
Of these, 4385 cells (1.7%) cross the borders of the country 
and the classification is based on the land use in their parts be- 
longing to the country. Each cell is classified into four classes 
of land use: agriculture (A), forest (F), industrial (I) and urban 
(U). Further, a set of 13 variables is defined for each cell. Th- 
ese variables and the classification are available for years 19- 
99 and 2007. We relate these variables to the classification in 
1999 and classify cells in 2007 assuming that the same associ- 
ation applies in 2007. Since the classification of the cells in 
2007 is known, we can assess the quality of this method.  

The results of our analysis demonstrate the effectiveness 
of the modelling framework to exploit the dependence among 
labels. It offers a new approach that is intuitively more realis- 
tic and attractive. The key objectives of this paper are threefo- 
ld: 

- Construct a multi-label dataset from a vector map;  

- Improve class assignment in land-use modelling by app- 
lying the multi-label concept; 

- Predict and estimate land-use change with dependence a- 
mong labels.  

Our solution entails both methodological and empirical novel- 
ties. The remainder of this paper is organized as follows. The 
next section discusses further the advantages of using multi- 
labels in the study of mixed land use. Section 3 describes the 
modelling framework used for predicting land-use changes. 
Section 4 presents the multi-label dataset construction from a 
vector map. Section 5 presents the application and the results. 
Finally, Section 6 presents conclusions, a discussion and pro- 
poses further directions for this area of research. 

2. Multi-Label Concept for Class Assignment 

To remove any ambiguity about the terms used for land- 

use modelling, we describe the binary, multi-class and multi- 
label learning concepts. The binary learning concept is used 
when every cell has one of two labels that are exclusive and 
complementary. For example, a cell is classified as either bui- 
lt-up or non-built-up land. The multi-class concept deals with 
more than two classes, e.g., to classify a cell of land as urban, 
industrial, agricultural or forest.  

Both binary and multi-class learning techniques make the 
assumption that each cell has a single label; a cell can be ei- 
ther urban or industrial but not both at the same time. Both bi- 
nary and the multi-class learning correspond to single-label or 
mono-label concept. Figure 1 displays an example of a classi- 
fication issue with two classes that overlap in the feature spa- 
ce. In single-label learning illustrated in Figure 1(a), the over- 
lapping classes cause classification errors, while in multi-label 
learning, Figure 1(b), the classes overlap (are not exclusive). 
For multi-label data, the membership of a cell to more than 
one class is not due to ambiguity (fuzzy membership), but to 
multiplicity (full membership) (Boutell et al., 2004). The tra- 
ditional supervised learning (binary or multi-class) can be re- 
garded as a special case of multi-label learning, in which each 
cell can have only a single label. The multi-label concept ge- 
neralizes both binary and multi-class concepts. By allowing a 
cell to have more than one label at a time, one of the major dr- 
awbacks of the land-use models is overcome (Omrani et al., 
2015a; Omrani et al., 2017), and areas of mixed use can be re- 
presented without a compromise.  

 

2.1. Relationships Between Labels 

Furthermore, in multi-label learning, the possibility of jo- 
int membership of a cell to several classes implies the existen- 
ce of information in the label space about the dependence (or 
correlation) among the labels. The assignment of a cell to a cl- 
ass may provide information about the membership of that ce- 
ll in other classes. Labels A and B are said to be dependent if 
the probability (frequency) of a cell having both A and B as its 
labels is not equal to the product of the probabilities of having 
labels A and B at the same time: P(AB) ≠ P(A) × P(B). Label 
dependence is present when the probability of a cell to have a 
given label depends on its having also the other label. For ex- 
ample, a cell with the label ‘forest’ is unlikely to be labeled al- 
so as ‘urban’, but the probability that the cell also has the la- 
bel ‘agriculture’ is higher. Label correlation (dependence) can 
be represented in the form of a contingency matrix CM. An 
element of CM is the conditional probability P(AB). Since la- 
bels in land use tend to be correlated, it is judicious to use mu- 
lti-label learning methods that take this correlation into acco- 
unt. One such method is DMLkNN; it stands for Dependent 
Multi-Label k-nearest neighbour. It is described in the next se- 
ction. 

3. Method: Multiple Labels and DMLkNN 

This method is based on the Bayesian k-nearest neighbor- 
ur (kNN) rule (Beyer, 1999). The kNN algorithm is a simple 
classification method. For each cell in the testing set we defi- 
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(a) (b)  
Figure 1. (a) Single-label classification with two overlapping 

classes (black and light-gray squares), and (b) multi-label 
classification with some cells belonging to both classes 

(squares split by the two colors). 
 

ne its distances from all the cells in the learning set. For exa- 
mple, if the learning set contains 200 cells and the testing set 
has 5000 cells, then we have to evaluate a 200 × 5000 matrix 
of distances. We refer to a cell from the testing set as unseen. 
For each unseen cell u, we identify k cells in the learning set 
that are closest to u. These cells are called the (k nearest) nei- 
ghbours (of u). For example, k may be set to 10. An unseen 
cell may be classified by the label that is in the majority am- 
ong its k neighborurs. The method DMLkNN is an advanced 
Bayesian version of the basic kNN method (Younes et al., 20- 
11); details are given Section 3.2. It is a probabilistic multi- 
label classification method that exploits information about la- 
bel (i.e., class) dependence. We give the main steps of the me- 
thod in the next section. 

 

3.1. The Algorithm 

Let X = d be the domain of d-dimensional cells of feat- 
ures and let £ = {l1, …, lQ} be the set of labels. The set S = {( 
x1, Y1), …, (xn, Yn)} is the multi-label dataset containing n cel- 
ls. They are considered to be identically distributed and drawn 
independently from X × 2£ where xi  X and Yi  2£. The cells 
of the set S are split into learning/training L (calibration) and 
test T (validation) sets. The split is accomplished by stratified 
random sampling with simple random sampling within each 
class of land use (stratum). We fit the model to set L and eva- 
luate its performance on set T using several performance me- 
trics. We replicate this process of splitting, fitting the model 
and evaluating its performance N times, obtaining N sets of 
the metrics. Their means (and standard deviations) are the ov- 
erall evaluations. Figure 2 shows the procedure of modelling 
land-use change using the DMLkNN method. 

The method learns a multi-label classifier C: X → 2£ us- 
ing the given learning dataset L, which predicts a set of labels 
for each unseen cell x ∈ X (Zhang and Zhou, 2007; 
Spyromitros et al., 2008). In addition to C, DMLkNN defines 
a scoring function g: X × £ → , assigning a real number to 
each (cell, label) combination. For each label l  £ the score 
g(x, l) indicates the level of relevance of label l for the cell x. 

 

Figure 2. Flow chart of the procedure for modelling land-use 
change using the DMLkNN method. 

 

For a given threshold value t, the multi-label classifier C(.) 
and the scoring function g(.,.) are related by the following 
equation: 

 

      ,x l g l t   x  (1) 

 
label l is associated with cell x if g(x, l) > t. The threshold va- 
lue t is set by cross-validation or heuristically (Fan and Lin, 
2007). 

For a given cell x and its label set Y  £, denote by k
xN the 

set of the k nearest training cells of x in according to a spe- 
cified distance function d(...), and let yx be the Q-dimensional 
indicator (0/1) vector of x; component q of yx indicates whe- 
ther or not x belongs to class lq: 

 

  , ,  ,  }

  

q
x

1 if l Y q 1 Q
y q

0 otherwise

    



 (2) 

 
Let cx denotes the Q-dimensional membership counting 

vector of x. Component q of cx is the number of cells amongst 
the kNNs of x that belong to class lq: 

 

    , ,  ,  }
i

k
i x

x x
x N

c q y q q 1 Q


     (3) 

 

3.2. Maximum-A-Posteriori (MAP) Rule  

We first identify the set k
xN of the k nearest neighbours in 

L of the test cell x and evaluate the counting vector cx. Denote 
by 1

qE and 0
qE the respective hypotheses that the cell x belongs  

and does not belong to class lq; q
bE : yx for b = 0 and 1. Deno- 

te further by q
jF , (j ∈ {0, 1, ..., k}) the event that exactly j ce- 
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lls in k
xN belong to class lq; q

jF :     0,  1,  ...,  xc q j k  . The 

MLkNN method uses the following MAP (Zhang and Zhou, 
2007):     |?ˆ q q

x b qy argmax P E E
xc

, details are given in Omrani  

et al. (2015a). The DMLkNN uses the following MAP rule for 
setting the indicator vector yx see (Younes et al., 2011): 

 

 

   

€

€

ˆ

,

  |

 |

j

j

q l
x b l

l

q q l
b l l

l

y argmax P E F

argmax P E F F

 
   

 
 

   
 









x

x x

c

c c

 (4) 

 
That is, the class of yx is predicted by the componentwise 

maximisers of the conditional probability of belonging to cla- 
ss lq, given the number of the nearest neighbours that belong 
to the class. The assignment of label lq to the cell x depends 
conjointly on the event that exactly  xc q cells have label lq  

in k
xN , i.e.,  x

q
C qF , and that exactly  xc l cells have label lj in 

k
xN , for each lj £\{lq}. The criterion defined by Equation (4) 

takes the label correlation into account since all the compon- 
ents of the counting vector cx are involved in the assignment 
(or not) of label lq to the cell x.  

Younes et al. (2011) show that estimating the quantities 
in Equation (4) from the training set L is not accurate since 
the number of possible events  €jl

l
lF  xc

is too large; its upper  

bound is (k + 1)Q. This problem can be resolved by the follow- 
ing fuzzy approximation. Denote by l

jG , j ∈ {0, 1, ..., k}, the 

event that the number of cells in k
xN that belong to class lj is in 

the interval [j – δ, j + δ], for a suitable δ ∈	{0, ..., k}; δ is the 
fuzziness parameter of the method. This results in a fuzzy M- 
AP relation 

 
 

  

/

 | ,ˆ
x

j q

q q l
x b q c l

l l

y argmax P E E G


 
 
 
 




xc
 (5) 

 
The MLkNN method introduced by (Zhang and Zhou, 

2007) is a special case of DMLkNN in which δ = k. In fact, if 
δ = k, then   /{ }q

xj

l
c ll

G
 

is the certain event. The classificati- 

on defined by Equation (4) corresponds to δ = 0. When δ = k, 
Equation (5) can be written using the Bayes rule, the denomi- 
nator in the first line is equal to 1.0, because it does not invol- 
ve b and relates to a certain event. 
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 (6) 

The probabilities in Equation (6) can be estimated from 
the training set. The label for an unseen cell with a covariate 
vector x is predicted as follows: 

 
   { |£  }1q xC x l y q    (7) 

 
C(x) contains all labels q for which the probability in Eq- 

uation (6) is greater for b = 1. 

 

3.3. Evaluation 

Evaluation of the performance of an algorithm for multi- 
label learning is more complex than for single-label learning. 
The prediction for a cell obtained by a multi-label classifier 
may be correct fully, partly or not at all. We give next the per- 
formance measures (metrics) used in this paper. Other multi- 
label criteria can be found in Boutell et al. (2004) and Tsou- 
makas and Katakis (2007). Let Yi be the set of the actual la- 
bels of xi and let Yi = C(xi) be the set of predicted labels for 
cell xi. Our metrics depend on the following four counts: 

ˆ
i i iA Y Y  , the number of labels that the actual and pr- 

edicted classifications have in common; 
ˆ

i i iB Y Y  , the number of labels that appear in at least 

one of the two classifications; 
ˆ

i iC Y  and i iD Y , the numbers of labels in the actu- 

al and predicted classifications. 

The metrics called accuracy, precision and recall and F1 
are defined as: 

 

1 1

1 1

1 1
 ,  ,

1 2 . 1 2
 ,  1

m m
i i

i ii i

m m
i i

i ii i i

A A
Acc Prec

m B m C

A Prec Rec A
Rec F

m D Prec Rec m C D

 

 

 

  
 

 

 
 (8) 

 
where m is the number of test cells. The measure F1 is the ha- 
rmonic average of Prec and Rec (Yang, 1999). Like Acc, it is 
a symmetric function of the actual and predicted labels.  

The Hamming loss (Hamm.loss) is based on the symmet- 
ric difference between the observed and predicted labels, Yi 
and îY . This metric counts the errors of two kinds, incorrect in- 
clusion and incorrect omission of a label. It is defined as:  

 

 
1

.
1 1

, ˆ
m

i i
i

Hamm loss Y Y
m Q

   (9) 

 
where ∆ stands for the symmetric difference between two sets 
and Q is the number of labels. 

All five metrics are averages of fractions, and so their va- 
lues are in the range [0, 1]. Larger values of Acc, Prec, Rec a- 
nd F1 correspond to better performance, while smaller value 
for Hamming loss corresponds to the better performance (Tso- 
umakas and Katakis, 2007; Yang, 1999). 
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4. Multi-Label Dataset 

In the studied dataset generated for the Grand Duchy of 
Luxembourg, we have the following elementary labels (class- 
es of land-use): urban, industrial, agriculture, forest, water and 
road. We assume that the water and road cells are static, sub- 
ject to no change over time, and retain the other four classes 
for the model we develop. We define a multi-label classifica- 
tion for each cell in a given year, by an element of the set {0, 
1}4, indicating for each elementary label whether it is present 
in the cell or not. For example, the multi-label class (1, 1, 1, 
1) indicates that all four elementary labels are present in the 
cell. We construct the dataset with multi-label classes and use 
it for classifying land use in Luxembourg (see Figure 3). In a 
vector map, features are represented by points, lines, and po- 
lygons. We rasterize the vector map of Luxembourg (i.e., con- 
vert the vector information into a raster format) by using a sq- 
uared grid with a resolution of 100 × 100 meters (cell size of 
1 hectare). This resolution is commonly used at a regional or 
national scale (White and Engelen, 2000). Such resolution is 
appropriate to capture variability that can be partly lost at lo- 
wer resolutions (Himans et al., 2005). The Arc-GIS10 softwa- 
re and Python programming language were used for the raste- 
rzation procedure (Figure 4). We obtain a raster map (i.e., rec- 
tangular grid of cells), in which a cell may be associated with 
more than one elementary label (called multi-label). In additi- 
on, we generated several variables, listed in Table 1, for expl- 
aining land use; they are based on the literature review (Verb- 
urg et al., 2004; Yang et al., 2008; Omrani et al., 2015a). 

 

 
Figure 3. Multi-label dataset construction. 

 

The following metrics summarizes ‘label multiplicity’ of 
a multi-label dataset   , , 1,  ...,  i iS x Y i n  with xi ∈ X and Yi  

 £, (Tsoumakas and Katakis, 2007).  

 
Figure 4. Conversion of a vector map to a raster: (a) vector 

dataset containing polygons with associated labels; (b) a grid 
with the desired cell size; (c) the values of the grid cells 
become the values of the labels of the polygons which 

contain them. 
 
label cardinality, denoted by LCard, is defined as the average 
number of labels per cell: 
 

0

1
( )

n

i
i

LCard S C
n 

   (10) 

 

label density, denoted by LDen(S), is defined as the average 
proportion of the labels in a cell: 
 

 
( )

LCard S
LDen S

Q
  (11) 

 
DL(S) counts the number of distinct label sets present in the 
dataset S: 

 
|{ }( ) ? ; |: ( , )i i i iDL S Y x X x Y S      (12) 

 

If every combination of elementary labels is present in S, 
then DL(S) = 2Q. For a multi-label dataset S with Q possible 
labels, the contingency matrix is defined by the elements CM 
[q][r] = 1 1( | ,)q rP E E where q and r ∈ {1, ..., Q}. It is the 
proportion of cells in S that are assigned label lq among those 
that are assigned also to lr. The off-diagonal elements of CM 
are related to the label dependence, and CM[q][q] = 1( )qP E is 
the frequency of label lq in S.  

5. Application: Land-Use Change in Luxembourg  

5.1. Study Area and Data 

Despite its small area (approximately 2,600 square kilo- 
meters) and population (around 530,000 habitants), Luxemb- 
ourg has a strategic geographic location and can be considered 
as an important contributor to decision making in the Europ- 
ean Union. The City of Luxembourg is one of the most attracti- 
ve metropolitan areas in Europe (Omrani et al., 2010). Its attr- 
action is due to the socioeconomic development of the society 
and specifically to the strong economic sectors (financial and 
industrial) that have been developed since the end of 1970’s. 
Surrounded by France, Germany and Belgium, Luxembourg 
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attracts a lot of well-qualified labour force to maintain its eco- 
nomic dynamism. That explains the importance of residential 
and daily mobility in Luxembourg and its bordering land (O- 
mrani et al., 2010).  

For predicting land-use changes in Luxembourg, we use 
a biophysical database for our land cover dataset. Features in 
this dataset are the land cover classes classified into 76 classes 
(OBS, 1999 and 2007). OBS − Occupation Biophysique du 
Sol - is also used; it is an inventory of land cover and biotopes 
in the Grand Duchy of Luxembourg within an inventory of 76 
classes at the scale of 1:10.000 based on orthophotos. 

These 76 classes distinguish between the variations of six 
main hierarchical categories: artificial, agriculture, forest and 
seminatural areas, wetlands and water. In this paper, we did 
not need to model the land use in that much detail. Thus, we 
reclassified the 76 into six major land cover classes (based on 
the 6 existing classes in the OBS): artificial (including urban, 
industry, transport), agriculture, forest, and water. We distin- 
guish urban, industrial, and transport artificial land cover to 
study the attraction and repulsion between these three differ- 
rent land uses, and the influence of one on the others. The re- 
classification was conducted with the assistance of experts th- 
at have been working on the same data base for some time. 
We predict land use in 2007, based on the input variables in 
1999. The input and output variables are described in Table 1. 
All these inputs are in line with what is used in the literature 
for prediction of land use (Yang et al., 2008). The ArcGIS so- 
ftware and Matlab tool were used for spatial data processing 
and modelling, respecttively. 

 

5.2. Main Results 

Table 2 shows a summary of land-use multi-label data in 
the observed periods (1999 and 2007). The dataset comprises 
255,698 cells. Each cell is associated with a 13-dimensional 
feature vector. The input variables are classified as physical, 
spatial, and transport related, as shown in Table 1. The state of 

a cell is its multi-label classification, with labels from the set 
comprising agriculture (A), forest (F), industrial (I) and urban 
(U). In the dataset, the label cardinality (the average number 
of labels for the cells) and label density are respectively equal 
to 1.54 and 1.54/4 = 0.38. Table 2 displays the binary coding 
of the multi-label classes with the corresponding number of 
cells in the dataset. As shown in the table, 1399 cells in 2007 
have all four elementary labels. The mono-labels F and A re- 
present together 50.97% (22.41% + 28.56%) of the studied ar- 
ea. The mono-label U accounts for 1.48% and I for 0.50% of 
the land. However, 46.98% of cells have multiple labels.  

Figure 5 displays the contingency matrix CM for the mu- 
lti-label land use dataset. It confirms that prediction of land 
use is a multi-label issue. The matrix is asymmetric, CM[A] 
[U] ≠ M[U][A], because its elements are conditional probabi- 
lities. In fact, CM[A][U]/CM[U][A] = P(A)/P(U). In urban ar- 
eas, forest is rare, but agriculture is more common than what 
chance would imply; CM[F][U] = 0.098, so labels F and U 
are unlikely to occur together. In contrast, CM[A][U] = 0.63; 
label A is frequently present with label U.  

 

5.2.1. Model Calibration and Validation  

We split the dataset S to the learning (L) and the testing 
(T) subsets by stratified random sampling with simple random 
sampling within each class of land use. It assures that all 
classes are well represented in L. Calibration of the model is 
based on L and it is validated on T. The DMLkNN method has 
two parameters, the number of neighbours used, k, and and 
fuzziness parameter, δ; see Section 3. It is essential to select 
the optimal values for k and δ. For this purpose, we use cross- 
validation with 100 replications. We explore the (integer) 
values of the parameters k and δ ≤ k, 1, 2, ..., 10. 

Figure 6 displays the values of Hamming loss as function 
of δ, with k set to 10. It shows that the best results were 
obtained for values of δ around 5. The setting of k is explored 
similarly, and we concluded that k = 10 is optimal. All the res- 

Table 1. Explanatory Variables 

Category Variable Description  

Physical  State of cell Multi-label class with different labels  
 Slope  Slope value of cell (%) 
Spatial Urban–neighbors Amount of urban cells in the MN3×3 

Industrial –neighbors Amount of industrial cells in the MN3×3 
Agriculture–neighbors Amount of agricultural cells in the MN3×3 
Forest–neighbors  Amount of forest cells in the MN3×3 
Water–neighbors Amount of water cells in the MN3×3 
Distance–border Distance from the border of Luxembourg (meters) 

Transport  Transport–neighbors Number of transport cells in the MN3×3 
Distance–bus–station Distance to the closest bus station (meters) 
Distance–train–station Distance to the closest train station (meters) 
Distance–highway Distance to the nearest highway access point (meters) 
Number–bus–station  Number of bus station within the distance of 2km from cell 
Number–train–station Number of train station within the distance of 2km from cell 

* MN 3 × 3 – 3 × 3 Moore neighbourhood comprises the eight cells surrounding a central cell on a two-dimensional square grid.  
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Figure 5. Contingency matrix for the multi-label land-use 
dataset. 

 

 
 

Figure 6. Values of Hamming loss for DMLkNN as a 
function of δ, where k = 10. 

 

ults reported below relate to k = 10 and δ = 5. 

 

5.2.2. Results and Analysis 

Figure 7 displays the transition matrix between 1999 and 
2007. It shows that some industrial land has been converted to 
urban (example of new Esch-Belval in the south part of Luxe- 
mbourg) and some forest or agriculture. Forest can be conve- 
rted mainly to industrial land and agriculture to industrial, for- 
est and urban lands. The transition matrix indicates that certa- 
in transitions tend not to occur. For example, urban land is not 
converted to agriculture or forest. The light-coloured squares 

 

Table 2. Summary of Land-Use Multi-Label Data 

Label 
set 

Class 
Observed label set 

1999 2007 

 U I A F # % # % 
F 0 0 0 1 56,730 22.19 57,297 22.41
A 0 0 1 0 75,320 29.46 73,025 28.56
AF 0 0 1 1 77,330 30.24 76,777 30.03
I 0 1 0 0 1,305 0.51 1,282 0.50 
FI 0 1 0 1 1,961 0.77 2,141 0.84 
AI 0 1 1 0 2,558 1.00 3,001 1.17 
AFI 0 1 1 1 2,277 0.89 2,609 1.02 
U 1 0 0 0 3,933 1.54 3,796 1.48 
FU 1 0 0 1 3,583 1.40 3,862 1.51 
AU 1 0 1 0 17,024 6.66 15,565 6.09 
AUF 1 0 1 1 9,342 3.65 9,375 3.67 
IU 1 1 0 0 973 0.38 1,426 0.56 
FIU 1 1 0 1 795 0.31 1,046 0.41 
AIU 1 1 1 0 1,517 0.59 2,943 1.15 
AFIU 1 1 1 1 892 0.35 1,399 0.55 
* The output classes are agriculture (A), forest (F), industrial (I) and 
urban (U).  
** The symbols # and % denote the number and percentage of cells. 
Classes are coded as 0 and 1.  
*** The value 1 (0) means the label is present (absent). 
 

above the diagonal in Figure 7 have all additions of label I. 

From the numerical version of Figure 7, we compute the 
percentages of cells that have no change, small change and la- 
rge change. The results are displayed in Table 3. Small change 
is defined as adding one or removing one elementary label (e.g., 
AF→A, A→AI), but not both, and all other changes are ca- 
lled large (e.g., A→F, F→A, AFI→F). The percentage of cells 
with no change (the same multi-label), small change and large 
change between the observed periods, 1999 and 2007, are equ- 
al to 90.89, 8.58 and 0.65%, respectively.  

The results of predicting land use by the DMLkNN meth- 
od are shown in Table 3. This table presents a summary of ob- 
served and predicted labelsets between 1999 and 2007. Figure 
8 shows a map of the Hamming loss. 

The map of Hamming loss shows the disagreement betw- 
een observed (2007) and predicted (2007) cells labels. Accor- 
ding to the results, the Hamming loss by cell is generally low 
and equal to (0, 1/4, 2/4, 3/4, 1) respectively with the follow- 
ing percentages (86, 12.663, 1.259, 0.076, and 0.002%). Over- 
all, observed-predicted differences (2007 vs. 2007) are small, 
which highlight the model performance. However, in some ar- 
eas the Hamming loss is a little bit high in some highly hete- 
rogeneous and dense urban areas, mostly in the city of Luxe- 
mbourg, Eschsur-Alzette (the second municipality) and Diff- 
erdange (the third municipality of the country), where a lot of 
constructions and other development took place in the 1999- 
2007 period. 

A more detailed summary of predictions is obtained by 
the 15 × 15 confusion matrix for multi-label classification sh-  
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Figure 7. Transition matrix: percentage of cells having label 

class (i) in 1999 and label class (j) in 2007. 
 

Table 3. Summary of Changes Between 1999 and 2007 

Change Observed 1999 – Observed 

2007 

Observed 1999 – Predicted 

2007 

None 90.89% 90.83% 

Small 8.58% 8.55% 

Large 0.65% 0.62% 

 

own in Figure 9. The rows and columns of this matrix are the 
multi-labels (F, A, AF, ..., AFIU), and its entries are the per- 
centages of cells. The diagonal of this matrix has very large 
entries because changes in land use over the eight years are 
not frequent. In Figure 9, we added a small dot in every squ- 
are (element of the matrix) that represents a small change, and 
a (larger) circle in every square that is for a large change. 

The results of land use predictions are summarized by the 
probability maps in Figure 10 for the four elementary conside- 
red labels. Probability map displays for each cell the probabi- 
lity that it belongs to a given class (Shahumyan et al., 2011; 
White et al., 2012; Tayyebi et al., 2015). The four panels show 
that prediction for most cells is easy; they are either very like- 
ly or very unlikely to have a given label. 

Only a few small areas are difficult to predict. They corr- 
espond to probability values between 0.4 and 0.6. The general 
trend of spread of industrial areas is mainly in areas of low sl- 
ope (flat landscape) and close to road and rail network. Simi- 
larly, the spread of the urban areas is significant around infras- 
tructure (roads, railway and bus lines). The class of industry is 
the most difficult to predict. This can be explained by the dis- 
persed nature of industrial class and the data structure. Indeed, 
the industry class plays an active role (the same as the urban 
class) with other classes of land use. Both urban and industrial 
classes are artificial areas, often connected to form contiguo- 

 
Figure 8. Map of Hamming loss. 

 

 
Figure 9. Confusion matrix for multi-label classification. 
Squares for small changes are marked by a black dot and 

squares for large changes by filled circles. 
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Figure 10. Probability maps. 
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us, discrete or mixed land use, which complicates spatial mo- 
delling. This problem may be solved by incorporating further 
variables related to socio-economics, population and employ- 
ment. 

In Table 4, we present performance measures from the 
application of DMLkNN and MLkNN methods on the testing 
dataset. Note that the MLkNN method is a special case of the 
DMLkNN, in which dependence among the labels is ignored. 
Based on the results, the DMLkNN outperforms the MLkNN 
method in terms of all five measures, but only on average. All 
the entries in the table are close to the ideal (1.0 or 0.0), be- 
cause the classification has changed only for a small fraction 
of the cells. Arguably, the distance from 1.0 should be consi- 
dered for the first four metrics, such as 0.0095 vs. 0.0125 for 
1-Accuracy. The differences of the measures are not substan- 
tially greater than the standard deviations. The standard errors 
of the percentages are ten times smaller than the standard dev- 
iations. Notable is the substantially greater standard deviation 
of Accuracy, F1 and Hamming loss for DMLkNN than for 
MLkNN. These results clearly demonstrate the advantages of 
the DMLkNN method in taking into account the intuitive hy- 
pothesis of label dependence and correlation in land use. 

6. Conclusions, Discussion and Future Work 

In this paper, we proposed multi-label learning for land- 
use prediction, by considering dependence between labels, ba- 
sed on the DMLkNN method. We illustrated and validated its 
use by modelling land-use changes in the Grand Duchy of Lu- 
xembourg. The performance of the DMLkNN method is better 
than MLkNN using the established evaluation criteria of pre- 
cision, recall and F-measure adapted to multi-label learning. 
Overall, the obtained probability maps show excellent agree- 
ment with the observed data. 

In land change science, we cannot deny uncertainty or er- 
rors are not linked with land use class assignment (Pontius, 
2000). First, the error might come from the interpretation of 
aerial photos (remote sensing field). This type of error might 
influence inputs and outputs of land use models. Second, er- 
rors could probably come from the scale of rasterization pro- 
cedure from vector map to raster data. Third, since we use sp- 
atial data that contain errors to model land use change, errors 
can propagate during modeling as well (Brown et al., 2013). 
In the future, we can minimize the effect of these errors by 
taking the dominance of labels within each cell in order to ga- 
in more details and have a richer representation of reality. Fur- 
thermore, other multi-label learning methods could also be te- 
sted in order to overcome drawbacks of the nearest neighbor- 
based methods. In addition, handling the land use problem as 
a class imbalance one is not treated in this paper. At our best 
understanding, this class imbalance problem, even an impor- 
tant issue, is not yet studied in land use change science. These 
issues of (1) the class imbalance problem and (2) explicit 
understanding of sources of errors need to be explored more 
fully in future work. 

Our next step is to investigate the problem of semi-super-  

Table 4. Results (mean ± std) on the Land-Use Dataset by 
DMLkNN and MLkNN Methods (k = 10 and δ = 5) Based on 
100 Replications 

 DMLkNN MLkNN 

Accuracy+ 0.9905±0.0151 0.9875±0.001 

Precision+ 0.9234±0.0170 0.8977±0.0164 

Recall+ 0.9105±0.0152 0.8935±0.0219 

F1+ 0.9166±0.0163 0.8952±0.0033 

Hamming loss- 0.0584±0.0034 0.0795±0.0014 

* +(-): the higher (smaller) the value, the better the performance.  
 

vised multi-label learning to manipulate both labeled and un- 
labeled cells at the same time. The problem of unsupervised 
multi-label learning is also important for handling totally un- 
labeled data including the special case when we have no prior 
knowledge about the target classes. Another interesting chall- 
enge is to combine several multi-label learning methods to en- 
hance model performance. It has been shown in conventional 
mono-label learning that combined methods result in better 
generalization and higher accuracy than a single method. The 
combination of several methods is obtained by combining the 
posterior probabilities from each method using a specific rule, 
such as minimum, maximum, product, sum or majority vot- 
ing. Future work can exploit the developments made in the D- 
MLkNN method to extend other methods for multi-label lear- 
ning, such as those based on decision trees and neural netwo- 
rks. We can use specifically the artificial neural network (Vali- 
pour et al., 2013) with its extension to multi-label learning for 
land use change prediction. In particular, we are planning to 
integrate the new multi-label concept with dependence among 
labels into the well-known ANN-based land use model called 
Land Transformation Model-LTM (Pijanowski et al., 2002, 
2014; Tayyebi et al., 2014). This future work would present to 
the community of geo-simulation a refinement of the LTM m- 
odel that allows the storage of multi-class occupancy. Of cour- 
se, other land-use models could benefit from including a mul- 
ti-label learning framework if modelers desire to avoid over- 
simplification of land use classes in area assignment.  
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