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ABSTRACT. Turbulent wind speed is a vital component of wind speed, corresponding to the small-scale uncertainty of wind speed. The 

wind power output and aerodynamic loads are significantly influenced by turbulent wind speed. The present paper concentrates on the 

study of turbulent wind speed prediction, which is hardly addressed in previous studies and is a novel approach to understand turbulent 

wind speed in advance. In the present study, turbulent wind speed is measured by turbulence standard deviation. Although turbulent wind 

speed itself is unpredictable, the correlation analysis proves that the turbulence standard deviation is predictable within a proper time 

horizon. As a result, the turbulent wind speed can be understood ahead of time by predicting turbulence standard deviation. The 10-min 

ahead, 30-min ahead and 60-min ahead predictions of turbulence standard deviation are provided by Support Vector Regression and 

Kernel Ridge Regression. Furthermore, the average wind speed is fused into the forecasting model to improve the prediction accuracy 

of turbulence standard deviation.  
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1. Introduction 

With the increasing concern about energy shortage and 

environmental pollution problems, the development of renew-

able energy has attracted more and more attention all over the 

world. Due to the highly mature technology of wind power, 

wind power has been rapidly developed in recent years. The 

global installed capacity of wind power is 486.66 GW by the 

end of 2016. Compared with traditional power generation, e.g. 

thermal power plant, wind power output is highly uncertain due 

to the random fluctuation of wind speed. The high uncertainty 

of wind power would lead to the imbalance between power 

generation and load demand, which has been a major barrier 

for large-scale wind power penetration. In order to cope with 

wind power uncertainty effectively, an accurate and reliable 

wind speed forecasting method is desired (Abdel-Aal et al., 

2009). Therefore, wind speed forecasting has attracted atten-

tion of many researchers in recent years.  

In general, there are mainly two methods for wind speed 

forecasting: Numerical Weather Prediction (NWP) method and 

data-driven method. NWP method usually utilizes the atmo-

spheric parameters (e.g., pressure, temperature and humidity) 

to establish a set of physical equations. Then wind speed pre- 
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diction can be obtained by solving these equations. The classic 

NWP models include the High Resolution Limited Area Model 

(HIRLAM) (Gustafsson, 1993), the Weather Research and Fore-

casting (WRF) model (Skamarock et al., 2005), the UK Meteo-

rological Office Mesoscale (MESO) model (Wilson et al., 

1999) and so on. The advantage of NWP is its long-term fore-

casting horizon (Liu et al., 2012). However, the grid resolution 

is coarse due to its expensive computational cost (Kuik et al., 

2007; Kusiak, 2009). Data-driven method utilizes statistical 

models to predict wind speed based on historical data. These 

statistical methods include autoregressive moving average 

model (Gomes et al., 2012), Kalman filtering (Cassola et al., 

2012), artificial neural networks (Li et al., 2010), support vector 

regression (Santamaría-Bonfil et al., 2016) and so on. Com-

pared with NWP, the short-term local-area wind speed fore-

casting is the superiority of data-driven method.  

According to the power spectrum of atmospheric bound-

ary layer (Van, 1957; Burton et al., 2011), the actual wind speed 

consists of two parts. The first part is average wind speed, and 

the other is turbulent wind speed. The outputs of NWP and 

data-driven methods are usually point forecasting with 15-min 

resolution, corresponding to the hourly average wind speed. 

However, the turbulent wind speed has significant impact on 

wind power utilization as well, including wind power output 

and blade aerodynamic loads. 

The average wind speed and air density are considered as 

the principal influence factors of wind power curve in the cur-

rent IEC standard (IEC, 2005). However, various studies have 

revealed that the wind power output is significantly influenced 
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by the turbulent wind speed (Sheinman and Rosen, 1992; 

Rosen and Sheinman, 1994; Gottschall and Peinke, 2008). With 

the increase of turbulence intensity, the wind power output 

would be overestimated at moderate wind speed and be under-

estimated at rated wind speed (Kaiser et al., 2007). For an off-

shore vertical axis wind turbine, the wind power output de-

creased by 23 to 42% compared with the case of no turbulence 

when the turbulence intensity increased from 5 to 25% (Siddi-

qui et al., 2015). In addition, the blade aerodynamic loads are 

significantly influenced by the turbulent wind speed. A study 

has proved that the turbulent wind speed is the major cause of 

the fatigue damage (Kelley et al., 2000). The fatigue loads on 

wind turbine blades increased due to the turbulent wind speed 

(Hand et al., 2003). Another study has revealed that the intense 

turbulent wind speed would lead to high fatigue loads on wind 

turbine blade although the average wind speed is low (Kim et 

al., 2015). The turbulent wind speed would lead to extreme load 

events, which increased the risk of breakdown (Lavely et al., 

2011; Carpman, 2011). In summary, the impacts of turbulent 

wind speed are various, including the design and performance 

of wind turbines, the quality of power delivered to the network 

and its effect on consumers (Burton et al., 2011).  

Considering its significant impacts, the study of turbulent 

wind speed is of vital significance for wind power utilization 

as well. Therefore, some researchers focused on the study of 

turbulent wind speed. The turbulence standard deviation and 

turbulence intensity are usually used to characterize turbulent 

wind speed. A study found that there exists a linear relationship 

between the turbulence standard deviation and the average 

wind speed (Welfonder, 1997). The ratio of the turbulence 

standard deviation to the average wind speed is defined as 

turbulence intensity (TI), which is an important parameter for 

the design and selection of wind turbines (IEC, 2005; Freuden-

reich, 2006). The IEC edition 2 proposes a normal turbulence 

model for wind turbine designing (IEC, 1998), including high 

turbulence level and low turbulence level. The latest IEC 

extends the model to three classes (IEC, 2005). 

Some studies compared the IEC model with the actual TI. 

By studying the actual TI observations at different sites, the 

results revealed that the IEC model may be more conservative 

when the wind speed exceeds 15 m/s (Hansen and Larsen, 

2005). Another study concluded that the IEC model under-

estimated the actual TI for high wind speed and complex sur-

roundings (Carpman, 2011). Due to the layout of wind turbine, 

the wake of upstream wind turbine has a significant impact on 

the TI of downstream wind turbine. So the impacts of wake effect 

on turbulence intensity were studied (Frandse and Thøgersen, 

1999; Jimenez et al., 2007; Sørensen et al., 2008; Chamorro 

and Fernando, 2009; Wu and Fernando, 2012). 

To the best of the author's knowledge, the forecasting of 

turbulent wind speed is rarely addressed in previous studies. 

The forecasting of turbulent wind speed plays an important role 

for wind power utilization. Firstly, the accuracy of wind power 

curve is of vital importance to wind power simulation. A more 

accurate wind power curve can be obtained by considering the 

correction of turbulent wind speed (Anahua et al., 2008; Gottschall 

and Peinke, 2008). Secondly, the health management system of 

wind turbine has attracted a lot of interests in recent years. The 

health management system contributes to the secure and eco-

nomical operation of wind turbines. As mentioned above, the 

blade aerodynamic loads are significantly influenced by the 

turbulent wind speed. If the turbulent wind speed can be under-

stood ahead of time, effective control strategies would be adopted 

to reduce the aerodynamic loads. Consequently, the reliability, 

safety, and availability of wind turbines would be improved. 

Therefore, the present paper focuses on the study of turbulent 

wind speed prediction. 

The remainder of the paper is organised as follows. Sec-

tion 2 introduces the intrinsic nature of wind speed uncertainty 

and its description. Section 3 analyzes the predictability of tur-

bulence standard deviation. Section 4 conducts the forecasting 

experiments. Section 5 concludes the paper. 

2. The Intrinsic Nature of Wind Speed Uncertainty 
and Its Description  

2.1. The Intrinsic Nature of Wind Speed Uncertainty 

Wind power is proportional to the cube of wind speed. 

Therefore, understanding the characteristics of wind speed is 

critical to wind power utilization (Burton et al., 2011). Un-

certainty is the intrinsic nature of wind speed, which always 

exists on different time scales. The wind speed spectrum pro-

posed by Van displays clear distinctions between different time 

scales (Van, 1957), which is shown in Figure 1. There are three 

obvious peaks in Figure 1. The first peak is called as synoptic 

peak and the corresponding time scale is approximately 4 days. 

The second peak is diurnal peak and the time scale is about 24 

hours. The wind speed corresponding to these time scales is 

fairly predictable, which is the research object of current wind 

speed forecasting studies. The third peak is turbulent peak on 

the time scale of minutes or seconds, which is known as tur-

bulence. Turbulent wind speed fluctuates with a relatively high 

frequency. Furthermore, the turbulent wind speed itself is un-

predictable. There is an obvious spectral gap between the diur-

nal peak and turbulent peak. The energy contained in the spec-

tral gap is fairly small. As a result, the actual wind speed is con-

sidered as the superimposition of average wind speed and tur-

 
Figure 1. Wind spectrum proposed by Van der Hoven. 
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bulent wind speed. Both of the two components are highly un-

certain, resulting in important impacts on wind power utiliza-

tion. As mentioned above, the wind speed uncertainty on large 

time scale has been widely studied by forecasting. However, 

the prediction study of uncertainty on small time scale is fairly 

rare, which is the research object of the present study. 

2.2. The General Description Method of Turbulent Wind Speed 

Turbulence is an extremely complex fluid phenomenon 

with high randomness, which is difficult to describe. The 

Reynolds-average method is usually used to study turbulence 

(Von Karman, 1948; Sagaut et al., 2006). According to Reynolds- 

average method, the flow variable is usually decomposed into 

the mean component and the fluctuating component. For the 

actual wind speed, decomposing it into average wind speed and 

turbulent wind speed is reasonable due to the existence of spec-

tral gap. 

Suppose {vi}, i = 1, 2, …, t is the actual raw wind speed 

time series, the average wind speed v̅ can be expressed as: 

 

1

1 T

i

i

v v
T =

=   (1) 

 

where T is the time window, e.g., 30-min or 1-hour. 

Then the turbulent wind speed vi′ can be isolated from the 

raw wind speed time series: 

 

i iv v v = −  (2) 

 

Turbulence standard deviation is usually used to measure 

turbulent component (Stull, 2012). Furthermore, the turbulence 

standard deviation is an important parameter for wind turbine 

designing. So the turbulence standard deviation is utilized to 

measure turbulent wind speed in the study. The turbulence 

standard deviation σ is given as: 

 

2

1

1
( )

1

N

i

i

σ v
N =

=
−
    (3) 

 

Then the detailed calculations are conducted based on the 

wind speed data. The wind speed data studied in the present 

study is collected from two wind farms in China. The first wind 

farm is located in Inner Mongolia Autonomous Region (de-

noted as WF1) and the second is located in Heilongjiang 

province (denoted as WF2). The data is collected from August 

2012 to July 2013 and the resolution is 5 s. Wavelet decom-

position has been widely used to decompose wind speed 

(Rahmani, 2015). The raw wind speed is decomposed into a 

low frequency component and a high frequency component by 

wavelet algorithm. The low frequency component corresponds 

to the average wind speed and the high frequency component 

is turbulent wind speed. The decomposition results for wind 

farm 1 on August 2012 are shown in Figure 2. The relevant 

turbulence standard deviation is shown in Figure 3. 

It is obvious that the curve profile of average wind speed 

in Figure 2b is highly similar to that of turbulence standard 

deviation in Figure 3b. The detailed comparison result is shown 

in Figure 4. An obvious dependency relationship between aver-

age wind speed and turbulence standard deviation is observed. 

 

Figure 2. The decomposition results of wind speed for 

WF1 on August 2012. 
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It is well known that the average wind speed is predictable. The 

obvious relationship implies that forecasting the turbulence 

standard deviation is possible. So the predictability of turbu-

lence standard deviation is analyzed in detail in section 3. 

3. Predictability Analysis of Turbulence  
Standard Deviation 

In Section 2, the turbulence standard deviation is chosen 

to depict the wind speed uncertainty on small time scale. The 

preliminary analysis reveals that forecasting turbulence stan-

dard deviation is possible. Therefore, the predictability of tur-

bulence standard deviation is further analyzed.  

Data-driven forecasting model estimates future values 

based on historical observations. According to the input var-

iable, the data-driven model can be classified into univariate 

model and multivariate model (Zheng and Kusiak, 2009). The 

univariate model is expressed as follows (Box et al., 2015): 

 
…( ) ( ( ), ( 1), , ( 1))y t n f y t y t y t m + = − − +   (4) 

 

where n is the forecasting horizon (e.g., for n = 1 h, the fore-

casting horizon is 1 hour), y′(t + n) is the forecasting value, y(t), 

y(t − 1), …, y(t − m + 1) are the current and historical observa-

tions. The total number of inputs is m. 

The multivariate forecasting model is established as fol-

lows (Box et al., 2015): 

 

1 1 1

2 2 2

( ) ( ( ), ( 1), , ( 1)

( ), ( 1), , ( 1)

( ), ( 1), , ( 1)

( ), ( 1), , ( 1))l l l

y t n f y t y t y t m

x t x t x t k

x t x t x t k

x t x t x t k

 + = − − +

− − +

− − +

− − +

…

…

…

…

…

   (5) 

 

where y, x1, x2, …, xl are input variables, the total number of 

inputs is m + k × l. 

The premise of forecasting based on data-driven model is 

that y(t + n) highly depends on y(t), y(t − 1), …, y(t − m + 1), 

xi(t), xi(t − 1), …, xi(t − k + 1), i = 1, 2, …, l. Autocorrelation 

and cross-correlation functions are useful tools to analyze the 

correlation between different random variables. Therefore, cor-

relation functions are introduced to analyze the predictability 

of turbulence standard deviation. 

 

3.1. Autocorrelation and Cross-correlation Functions 

If the future turbulence standard deviation highly depends 

on its historical observations, then the turbulence standard de-

viation can be predicted based on the univariate forecasting 

model. The dependency between future values and historical 

observations can be measured by autocorrelation function. 

Suppose x(t + τ) is the time shifted signal of x(t), then the 

autocorrelation function is defined as: 
 

0

1
( ) lim ( ) ( )

T

xx
T

R τ x t x t τ dt
T→

= +    (6) 

 

where τ is time lag. 

 

Figure 3. Comparison between turbulent wind speed and 

corresponding turbulence standard deviation for WF1 on 

August 2012. 

 

Figure 4. Relationship between turbulent standard deviation 

and hourly average wind speed. 
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In practical engineering applications, the Pearson auto-

correlation coefficient ρxx(τ) is usually used to measure the 

dependencies of signals between different times: 

 
-

1

2

1

( ( ) )( ( ) )

( )

( ( ) )

n τ

t

xx n

t

x t x x t τ x

ρ τ

x t x

=

=

− + −

=

−




   (7) 

 

where x̅ is the mean value of {x(t), t = 1, 2, …, n}. ρxx(τ) = 1 

represents an intense correlation between x(t) and x(t + τ). 

While ρxx(τ) = 0 indicates the absence of a relation between x(t) 

and x(t + τ). In general, |ρxx(τ)| ≤ 1. The larger the |ρxx(τ)|, the 

higher the correlation. 

For the multivariate forecasting model, the dependencies 

between turbulence standard deviation and average wind speed 

should be measured firstly. So the cross-correlation function is 

introduced into the study. Suppose {x(t)} and {y(t)} are two given 

time series, then the cross-correlation function between x(t) and 

y(t + τ) is shown as follows: 

 

0

1
( ) lim ( ) ( )

T

xy
T

R τ x t y t τ dt
T→

= +    (8) 

 

Similarly, the cross-correlation coefficient is defined as 

(Kisi et al., 2013; Nourani, 2015): 

-

1

1
2 2 2

1 1

( ( ) )( ( ) )

( )

[ ( ( ) ) ( ( ) ) ]

n τ

t

xy n n

t t

x t x y t τ y

ρ τ

x t x y t y

=

= =

− + −

=

− −



 
   (9) 

 

where x̅ is the mean value of {x(t), t = 1, 2, …, n}, y̅ is the 

mean value of {y(t), t = 1, 2, …, n}. 

The meaning of ρxy(τ) is the same as ρxx(τ). The larger the 

|ρxy(τ)|, the higher the correlation. 

 

3.2. Predictability Analysis of Turbulence Standard Deviation 

The autocorrelation of turbulent wind speed correspond-

ing to Figure 3 a is analyzed in the first, which is shown in Fig-

ure 5. The bottom sub-figure is the magnification of the top 

sub-figure of Figure 5. The autocorrelation coefficient ρv′ − v′(τ) 

sharply decreases with the increase of the time lag τ. In general, 

ρxx(τ) ≥ 0.5 represents a significant correlation. In the present 

study, ρxx(τ) = 0.6 is selected as threshold in the following anal-

ysis. According to the threshold, the corresponding time lag 

τv′(0.6) ≈ 4.5 s. In other words, v′(t) is weakly correlated with 

v′(t + τ) when τ > 4.5 s. The statistical results of τv′(0.6) are 

shown in the second and fifth columns of Table 1. τv′(0.6) ranges 

from 3.1 to 14.0 s. The correlation is significant only when τ ≤ 

14.0 s. Although in the case of τv′(0.6) ≈ 14.0 s, the time horizon 

is still too short for forecasting. Therefore, forecasting v′(t) 

based on its historical data is impossible. In other words, turbu-

lent wind speed is unpredictable. 

Then the same analysis is conducted for the turbulence 

standard deviation corresponding to Figure 3(b). The result is 

shown in Figure 6. According to Figure 6, the time lag τσ(0.6) 

≈ 1.2 h when ρσ − σ(τ) = 0.6. The statistical results of τσ(0.6) are  

 
Figure 5. Predictability analysis of turbulent wind speed 

for WF1 on August 2012. 

Table 1. The Statistical Results of Predictability Analysis 

Month 

WF1 WF2 

τν΄(0.6) τσ(0.6) 
ρσ-ν΄ 

(4) 
τν΄(0.6) τσ(0.6) 

ρσ-ν΄ 

(4) 

1 3.0 s 5.8 h  0.951 5.8 s 1.0 h 0.909 

2 3.1 s 3.2 h 0.899 7.2 s 3.2 h 0.880 

3 3.5 s 2.5 h 0.861 8.0 s 1.9 h 0.892 

4 4.5 s 2.6 h 0.868 8.0 s 4.1 h 0.882 

5 6.0 s 0.9 h 0.767 12.5 s 2.8 h 0.839 

6 4.5 s 1.4 h 0.848 12.5 s 1.3 h 0.848 

7 8.5 s 0.8 h 0.784 9.0 s 1.2 h 0.874 

8 4.5 s 1.2 h 0.832 14.0 s 0.6 h 0.825 

9 7.5 s 1.5 h 0.832 8.0 s 1.2 h 0.863 

10 4.0 s 2.2 h 0.874 5.2 s 1.4 h 0.897 

11 3.5 s 2.3 h 0.840 4.1 s 3.2 h 0.943 

12 3.5 s 5.8 h 0.910 6.5 s 4.1 h 0.917 

* where τν΄(0.6) represents the time delay when the autocorrelation 

coefficient of turbulent wind speed is 0.6. τσ(0.6) represents the time 

delay when the autocorrelation coefficient of turbulence standard 

deviation is 0.6. ρσ-ν΄(4) represents the autocorrelation coefficient 

between turbulence standard deviation and average wind speed when 
the time delay is 4 h. 
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shown in the third and sixth columns of Table 1. τσ(0.6) ranges 

from 0.6 to 5.8 h. The correlation is significant within a long-

time horizon. The time horizon is long enough for forecasting. 

Therefore, the turbulence standard deviation σ is predictable. 

Figure 4 reveals that turbulence standard deviation is 

highly correlated with average wind speed. It means that aver-

age wind speed would contribute to the forecasting of tur-

bulence standard deviation. So the cross-correlation between 

average wind speed and turbulence standard deviation is ana-

lyzed. Figure 7 shows the analysis results. ρσ − v′(τ) decays slow-

ly with the increase of time lag τ. The time lag τ is more than 

24 h when ρσ − v′(τ) = 0.6. In general, the forecasting horizon of 

data-driven model is less than 4 h in most wind power fore-

casting studies. So the cross-correlation coefficient ρσ − v′(4) cor-

responding to τ = 4 h is analyzed here, which is shown in the 

fourth and seventh columns of Table 1. ρσ − v′(4) ranges from 

0.767 to 0.951 when the time lag τ is 4 h. So the relationship 

between turbulence standard deviation and average wind speed 

is highly significant. Average wind speed can provide valuable 

information for turbulence standard deviation prediction. 

In conclusion, the turbulent wind speed itself is unpredict-

able. However, the turbulence standard deviation can be fore-

casted within a specific time horizon. 

 

3.3. Physical Mechanism of the Predictability of Turbulence 

Standard Deviation 

Wind is a phenomenon of atmospheric turbulence motion. 

The predictability of turbulence standard deviation can be ex-

plained by the energy spectrum of atmospheric turbulence, 

which is shown in Figure 8. The energy spectrum is composed 

of three parts: energy region, inertial sub-region and dissipation 

region (Panofsky, 1984; Frisch, 1996). The atmospheric turbu-

lence field is full of a series of vortexes with different time 

scales. For the atmospheric turbulence motion, the energy con-

tained in the energy region mainly originates from the larger-

scale vortex corresponding to the weather process. In the iner-

tial sub-region, the energy cannot increase or decrease. The energy 

is just transmitted from large-scale vortex to small-scale vortex. 

The transmission process abides by the law of energy conserva-

tion. Whereas in the dissipation region, energy is dissipated 

gradually due to viscosity. Turbulent energies at different times 

are interrelated with each other within a specific time scale. For 

wind speed, the turbulence standard deviation represents the 

turbulent energy. As a result, the turbulence standard deviations 

at different times are highly correlated with each other within a 

specific time horizon. Meanwhile, the energy contained in small- 

scale vortex (the energy represented by turbulence standard de-

viation) comes from that contained in large-scale vortex (the 

energy represented by average wind speed). So the relationship 

between turbulence standard deviation and average wind speed 

is highly significant.  

4. Prediction Experiments of Turbulence  
Standard Deviation  

Aforementioned analysis has proved that the turbulence 

standard deviation is predictable. So the detailed forecasting 

experiments are conducted based on Support Vector Regression 

(SVR) and the Kernel Ridge Regression (KRR) in the section. 

 

Figure 6. Predictability analysis of turbulence standard de-

viation for WF1 on August 2012. 

 

Figure 7. Cross-correlation analysis between turbulence 

standard deviation and average wind speed for WF1 on 

August 2012. 
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4.1. Forecasting Model 

4.1.1. Support Vector Regression (SVR) 

Suppose {xi, yi}i = 1: N is a set of training samples, where 

xi is the input and yi is the associated output. The SVR function 

(Vapnik, 1998) can be expressed as follows: 

 

( )
1

( ) ,
n

i i

i

f x ω K x x b
=

= +∑    (10) 

 

where K(∙, ∙) is the kernel function. 

The training process of SVR equates to the following op-

timization problem: 

 

*

*

, , ,
1

1
min ( )

2

N
T

i i
ω b ξ ξ

i

ω ω C ξ ξ
=

+ +    (11) 

 

subject to:  

( )( )

( )( )

*

*, 0, 1, ...,

T

i i i

T

i i i

i i

y w φ x b ε ξ

w φ x b y ε ξ

ξ ξ i n

− + +

+ − +

=

≤

≤

≥

   (12) 

 

where φ is the mapping function. 
iξ  and 

*

iξ  are slack variables 

subject to the ε-insensitive loss function. C is the cost of error. 

The aforementioned optimization problem can be solved 

by using Lagrange multiplier: 

 

*

* *

,
1 1

* *

1 1

1
max( ( )( ) ( , )

2

( ) ( ))

i i

N N

i i j j i j

i j

N N

i i i i i

i i

K x x
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= =

= =

− − −

− + + −



 

   (13) 

subject to:  

 

*

1

*

( ) 0

, [0, ]

N

i i

i

i i C

 

 

=


− =


 


   (14) 

 

where ai and ai
* are Lagrange multipliers. 

 

4.1.2. Kernel Ridge Regression (KRR) 

The function of kernel ridge regression is the same as SVR 

(Douak, 2013): 

 

( )
1

( ) ,
n

i i

i

f x ω K x x b
=

= +∑    (15) 

 

The optimization objective is:  

 

2

, ,
1

1 1
min

2 2

N
T

ω b γ
i

ω ω γ e
=

= +     (16) 

 

subject to:  

 

( ) , 1, 2, ...,T

i i iω φ x b e y i N+ + = =    (17) 

 

where ei is the error and γ is a regularization factor. 

The optimization problem can also be transformed as: 

 

( )( )

2

, ,
1

1

1 1
min

2 2

N
T

ω b γ
i

N
T

i i i i

i

ω ω γ e

λ ω φ x b e y

=

=

+

− + + −




   (18) 

 

4.2. Prediction Experiments 

To evaluate the prediction performance, Mean Absolute 

Error (MAE) and Mean Square Error (MSE) are selected as the 

evaluation indexes (Purkait et al., 2008): 

 

1

1 n

ri fi

i

MAE y y
n =

= −    (19) 

 

( )
2

1

1 n

ri fi

i

MSE y y
n =

= −    (20) 

 

where yri is the observation value, yfi is the predicted value, and 

n is the number of test samples. 

 
Figure 8. Energy spectrum of atmospheric turbulence. 
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In the first, the univariate forecasting model is considered. 

Namely, turbulence standard deviation is predicted only based 

on its historical data. Each wind farm data is divided into 12 

sets according to the month. In each data set, the data from the 

first 20 days is used for training and the rest data is used for 

testing. According to the results in Table 1, τσ(0.6) ranges from 

0.6 to 5.8 h. So the forecasting horizon n in the present study is 

selected as 10-min, 30-min and 60-min, respectively. Before 

the experiments, the input dimension m must be determined in 

the first. In this study, m is selected by experiments. During the 

selection process, the prediction horizon n remains constant, 

while the input dimension m varies from 1 to 144 (the time 

interval is 10-min). According to the prediction results, the 

dimension corresponding to the minimum prediction error is 

selected as the input dimension m. As shown in Figure 9, the 

error curves firstly decrease and then increase with the increase 

of input dimension. According to the error curves, the optimum 

input dimensions for 10-min ahead prediction, 30-min ahead 

prediction and 60-min prediction are 5, 8 and 8, respectively.  

After determining the optimum input dimension, 10-min 

ahead, 30-min ahead and 60-min prediction experiments are 

conducted based on SVR and KRR. Figures 10 ~ 12 show the 

prediction results. The prediction errors are presented in Tables 

2 ~ 4. The prediction results demonstrated that the turbulence 

standard deviation indeed can be forecasted. The prediction  

 

Figure 9. Selecting the input dimension of turbulence stan-

dard deviation: (a) 10-min ahead prediction; (b) 30-min ahead 

prediction; (c) 60-min ahead prediction. 

 

Figure 10. Actual wind speed turbulence standard devia-

tion observations versus forecasting results (10-min ahead 

prediction) with different methods. 
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errors of SVR approximate closely to that of KRR. Further-

more, the prediction errors increase with the increase of pre-

diction horizon.  

According to section 3, the turbulence standard deviation 

is highly correlated with average wind speed. Therefore, the 

multivariate forecasting model is considered. The average wind 

speed is fused into the forecasting model to predict turbulence 

standard deviation. Aforementioned results have proved that 

the prediction performance of SVR is similar to KRR. So only 

the SVR model is considered here. Compared with the original 

SVR model (the univariate forecasting model), the multivariate 

forecasting model is denoted as the modified SVR model. The 

60-min ahead prediction experiment is conducted to compare 

the forecasting performance of modified SVR model and orig-

inal SVR model.  

The input dimension of average wind speed is determined 

by experiment as well. In the selection process, the input di-

mension of turbulence standard deviation m is constant. While 

the input dimension of average wind speed k varies from 1 to 

144 (the time interval is 10-min). Figures 13 ~ 14 show the 

variation curves of MAE and MSE. The red-solid line represents 

the forecasting error of original SVR model. The blue-dot-solid 

line represents the forecasting error of modified SVR model. 

The error curves firstly decrease and then increase with the 

increase of input dimension. So the optimum input dimension 

of average wind speed is determined. Furthermore, the fore-

casting errors decrease when the average wind speed is fused 

into the forecasting model. After determining the optimum 

input dimension k, the turbulence standard deviation is pre-

dicted based on modified SVR model.  

Figure 15 shows the forecasting results. Obviously, the 

prediction results of modified SVR model are closer to the 

actual observations than original SVR model.  

To quantify the forecasting performance, the following 

two indexes are defined: 

 

Δ 100%O M

O

MAE MAE
MAE

MAE

−
=     (21) 

 

 
Figure 12. Actual wind speed turbulence standard devia-

tion observations versus forecasting results (60-min ahead 

prediction) with different methods. 

 
Figure 11. Actual wind speed turbulence standard devia-

tion observations versus forecasting results (30-min ahead 

prediction) with different methods. 
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where MAEO is the MAE of original SVR model. MAEM is the 

MAE of modified SVR model. Also: 

 

Δ 100%O M

O

MSE MSE
MSE

MSE

−
=     (22) 

 

where MSEO is the MSE of original SVR model. MSEM is the 

MSE of modified SVR model. 

The positive indexes imply that the forecasting perfor-

mance of modified SVR model is better than original SVR 

model. The statistical results of ΔMAE and ΔMSE are shown in 

Table 5. All the values in Table 5 are greater than 0. Therefore, 

the forecasting accuracy is significantly improved after fusing 

the average wind speed into the model.  

5. Conclusions 

Actual wind speed consists of average wind speed and 

turbulent wind speed. Both of them are characterized by sig-

nificant uncertainty. The wind speed uncertainty on large time 

scale has been widely studied by forecasting average wind 

speed. However, the forecasting study of wind speed uncer-

     Table 2. Prediction Errors for Wind Farm 1 and Wind Farm 2 (10-min ahead Prediction) 

 Month 1 2 3 4 5 6 7 8 9 10 11 12 

1 

SVR 
MAE 0.098 0.104 0.116 0.15 0.135 0.117 0.126 0.098 0.142 0.148 0.119 0.108 

MSE 0.022 0.023 0.029 0.051 0.045 0.034 0.044 0.021 0.041 0.047 0.029 0.024 

KRR 
MAE 0.099 0.108 0.12 0.153 0.135 0.120 0.130 0.106 0.147 0.151 0.122 0.0115 

MSE 0.023 0.028 0.033 0.051 0.043 0.035 0.047 0.034 0.05 0.049 0.036 0.034 

2 

SVR 
MAE 0.139 0.173 0.149 0.172 0.158 0.176 0.145 0.163 0.173 0.153 0.139 0.148 

MSE 0.042 0.064 0.048 0.069 0.056 0.071 0.044 0.057 0.060 0.046 0.036 0.046 

KRR 
MAE 0.140 0.172 0.172 0.151 0.161 0.157 0.176 0.146 0.160 0.177 0.148 0.143 

MSE 0.042 0.062 0.062 0.050 0.059 0.057 0.068 0.047 0.056 0.063 0.040 0.041 

 
     Table 3. Prediction Errors for Wind Farm 1 and Wind Farm 2 (30-min ahead Prediction) 

 Month 1 2 3 4 5 6 7 8 9 10 11 12 

1 

SVR 
MAE 0.112 0.131 0.143 0.184 0.46 0.136 0.15 0.134 0.172 0.177 0.146 0.136 

MSE 0.028 0.043 0.047 0.07 0.06 0.043 0.059 0.05 0.069 0.063 0.046 0.044 

KRR 
MAE 0.0118 0.147 0.151 0.189 0.162 0.142 0.164 0.154 0.183 0.178 0.145 0.144 

MSE 0.03 0.046 0.05 0.074 0.059 0.044 0.063 0.054 0.07 0.065 0.045 0.046 

2 

SVR 
MAE 0.172 0.150 0.188 0.170 0.216 0.192 0.188 0.161 0.176 0.196 0.162 0.155 

MSE 0.060 0.044 0.072 0.058 0.097 0.076 0.079 0.050 0.063 0.073 0.048 0.047 

KRR 
MAE 0.178 0.182 0.191 0.169 0.223 0.195 0.192 0.163 0.178 0.197 0.162 0.164 

MSE 0.066 0.068 0.073 0.057 0.102 0.076 0.077 0.052 0.064 0.075 0.047 0.050 

 
     Table 4. Prediction Errors for Wind Farm 1 and Wind Farm 2 (60-min ahead Prediction) 

 Month 1 2 3 4 5 6 7 8 9 10 11 12 

1 

SVR 
MAE 0.132 0.153 0.158 0.194 0.181 0.161 0.179 0.15 0.201 0.208 0.167 0.158 

MSE 0.036 0.051 0.054 0.082 0.076 0.06 0.075 0.052 0.087 0.089 0.059 0.058 

KRR 
MAE 0.134 0.166 0.164 0.209 0.185 0.168 0.191 0.171 0.215 0.205 0.175 0.164 

MSE 0.036 0.06 0.059 0.087 0.082 0.068 0.086 0.094 0.125 0.091 0.078 0.069 

2 

SVR 
MAE 0.204 0.182 0.196 0.192 0.245 0.213 0.208 0.184 0.207 0.231 0.189 0.176 

MSE 0.092 0.068 0.075 0.076 0.125 0.091 0.095 0.067 0.086 0.103 0.072 0.058 

KRR 
MAE 0.216 0.193 0.208 0.207 0.251 0.227 0.221 0.189 0.214 0.221 0.183 0.182 

MSE 0.108 0.078 0.096 0.092 0.158 0.109 0.127 0.073 0.093 0.092 0.064 0.061 

 
      Table 5. Statistical Results of ΔMAE and ΔMSE 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

1 
ΔMAE (%)  10.40 15.56 11.90 12.50 5.87 19.07 18.37 14.08 15.93 18.66 24.52 21.94 

ΔMSE (%) 22.17 26.97 30.11 17.03 17.34 42.29 38.17 29.63 31.78 32.79 41.68 37.16 

2 
ΔMAE (%) 2.91 12.69 5.45 21.39 17.21 4.96 1.49 4.48 6.93 12.28 16.48 5.59 

ΔMSE (%) 3.88 25.35 12.43 40.08 33.41 6.88 1.90 10.04 16.64 23.52 28.02 11.45 
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tainty on small time scale (namely turbulent wind speed) is 

fairly rare. The turbulent wind speed is depicted by turbulence 

standard deviation in the present study. Then autocorrelation 

and cross-correlation functions are used to analysis the pre-

dictability of turbulent wind speed and turbulence standard 

deviation. The analysis results prove that the turbulent wind 

speed is unpredictable. Nevertheless, the turbulence standard 

deviation is predictable within a proper time horizon. After 

verifying the predictability of turbulence standard deviation, 

the 10-min ahead, 30-min ahead and 60-min ahead prediction 

experiments are conducted by using SVR and KRR. The fore-

casting results agree well with observations. The forecasting 

accuracies of SVR and KRR are similar. The forecasting errors 

increase with the increase of forecasting horizon. In the final, 

the average wind speed is fused into the forecasting model. The 

forecasting accuracy is significantly improved compared with 

the original model. All of these results prove that forecasting 

turbulence standard deviation based on data-driven model is 

feasible.  

The applications of turbulence standard deviation predic-

tion are not addressed in the present study. However, two pos-

sible application scenarios may be envisaged. Firstly, wind 

power curve is usually used to transform wind speed forecast-

ing into wind power forecasting. Considering the impact of tur-

bulent wind speed on wind power curve, its forecasting results 

 
Figure 14. Selecting the input dimension of average wind 

speed based on WF2. 

 
Figure 13. Selecting the input dimension of average wind 

speed based on WF1. 

 
Figure 15. Prediction performance of modified SVR model 

(60-min ahead prediction). 
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can be used to correct the wind power curve, which contributes 

to improve the modelling accuracy of wind power output. 

Secondly, turbulent wind speed is a major cause of high aero-

dynamic loads on wind turbine blades. Effective control strat-

egies can be taken to reduce the aerodynamic loads according 

the forecasting results, which is significant for wind farm op-

eration and management. 
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