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Appendix A: Regime detection procedure 

As highlighted by Doove et al. (2014)1, caution is needed when data contain nonlinear 

structures like interaction terms between climate and hydrological variables, that are omitted from the 

imputation model and are likely to create serious biases in imputed values. Therefore, in order to take 

full advantage of the MVN modelling and alleviate the effect of nonlinearity and interactions, we 

considered a data-driven procedure to partition a calendar year into a series of stable regimes, each one 

showing limited variations both in climate variables and hydrological components. For this purpose, 

most studies involving EC data employ calendar months, making use of the climatic definition of 

seasons with a fixed start and end date (winter: JFM; spring: AMJ; summer, JAS; autumn: OND) or 

adopt rolling and overlapping temporal windows of 15/30 days length. While the first of the two 

approaches does not guarantee the ecological regimes are correctly detected, the latter could be 

inefficient from a computational point of view. 

As models should preferably be fitted to the data in an automatic fashion without unnecessary 

user involvement, we have chosen to make use of a two-step change-point detection procedure 

consisting of: (i) a smoothing-spline regression on NEE daytime subset to extract the long-period 

                                                
1 Doove, L.L., Van Buuren, S., Dusseldorp, E. (2014). Recursive Partitioning for Missing Data Imputation in the 

Presence of Interaction Effects. Computational Statistics & Data Analysis. 72, 92–104. doi:10.1016/j.csda.2013.10.025 



component; (ii) a breakpoint analysis to detect shifts in mean level of the NEE fitted values (Zeileis et 

al., 2002)2. The workflow of this procedure is represented in Figure A1. 

 

Figure A1. Work flow of the regime detection procedure for EC datasets. 

 

It is important to stress that the proposed procedure is mainly intended to split EC datasets into 

more homogeneous periods, in order (i) to preserve the short-term relationship between EC fluxes and 

climate variables (Hui et al., 2004)3 and (ii) to assure a sufficient number of data points inside each 

                                                
2 Zeileis, A., Leisch, F., Hornik, K., Kleiber, C. (2002). Strucchange : An R Package for Testing for Structural 

Change in Linear Regression Models. Journal of Statistical Software. 7(2). doi:10.18637/jss.v007.i02 
3 Hui, D., Wan, S., Su, B., Katul, G., Monson, R., Luo, Y. (2004). Gap-Filling Missing Data in Eddy Covariance 

Measurements Using Multiple Imputation (MI) for Annual Estimations. Agricultural and Forest Meteorology. 121(1-2), 93–
111. doi:10.1016/S0168-1923(03)00158-8 



regime, enough to run MI algorithms without instability due to lack of information. Although our intent 

is not to identify regimes with a strongly characterized relevance from an ecological point of view, we 

found that in most cases our results were in good agreement with the hydro-ecological regime 

definitions proposed by Thomas et al. (2009)4. 

 

As an example, the following six regimes were identified for the IT-CA1 use case (Figure A2): 

• Regime 1 – Winter/dormant period, starting from DoY 1 up to DoY 58. 

• Regime 2 – Growing season with non-limited water resources, from DoY 59 to DoY 112. This 

phase corresponds to poplar leaf unfolding (personal communication by Simone Sabbatini, 

University of Tuscia). 

• Regime 3 – Growing season with nonlimited water resources, from DoY 113 to DoY 166. 

• Regime 4 – Drought period, from DoY 167 to DoY 252. 

• Regime 5 – Growing season with nonlimited water resources, from DoY 253 to DoY 306. 

• Regime 6 – Winter/dormant season, from DoY 307 to DoY 366. 

The sensitivity of the MI model to the regime detection procedure is low. In particular, for both 

ADL and PADL models, the presence of lagged endogenous variables and the cubic time trend entering 

the model during daytime period help to drive the imputation model, even in the case that breakdates 

are not correctly identified. The largest negative impact on the quality of the imputations is mainly 

attributable to the presence of long gaps crossing two regimes, and such impact could even be more 

accentuated in the case of abrupt changes (e.g. cutting). 
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Figure A2. An example of regime detection for the IT-CA1 use case. 

 

 



Appendix B: Daytime and nighttime separation and MAR assumption. 

As we said in Subsection 2.5, the data were further split by daytime and nighttime periods 

according to a global radiation threshold of 10 Wm-2. In the case of the PADL model, the daytime and 

nighttime subdivision was performed by evaluating the median diurnal cycle of the global radiation in 

each regime, in order to ensure that time series length T  was constant for each cross-sectional data 

point. Figure B1 shows the daytime and nighttime periods for the IT-CA1 use case. 

Performing the analysis separately for daytime and nighttime periods is important not only to 

distinguish between different ecophysiological processes (that is, CO2 assimilation processes during 

daytime, and CO2 release from the ecosystem to the atmosphere through respiration processes during 

nighttime), but has also the essential function of making the MAR assumption more likely. In fact, 

even if there is no way to test whether the MAR hypothesis holds in a given data set, the number of 

NEE missing data points is higher during nocturnal regimes, when low-turbulence conditions cause 

many data to be rejected by the quality control routines (e.g. u*-filtering procedure). In addition, 

because of the absence of photosynthetic activity, NEE data during nighttime are likely to assume 

positive values, as they only reflect the ecosystem respiration processes. This means that if data are not 

analysed separately, the probability of being missing depends on the missing values themselves, and it 

is higher for nocturnal data points. If we could know the true value of the missing data, and if we knew 

that such value were positive, there would be a high chance of predicting exactly that the missing data 

point had occurred during the nighttime. In this case, it cannot be excluded that the missingness pattern 

is non ignorable, and therefore that proper MI procedures cannot be devised. When data are, instead, 

analyzed separately by daytime and nighttime subperiods, there is no reasonable way to relate the 

probability of missingness to the values assumed by NEE. This behavior is not specifically valid, of 

course, for NEE only and, mutatis mutandis, the same considerations apply equally well to other flux 

variables. 



 

Figure B1. An example of subdivision into daytime and nighttime subsets for the PADL model for the 
IT-CA1 use case. 
 

  



Table 1S. Annual budget estimates, associated uncertainties, and fraction of missing information ρ  of 
Latent Heat (LE, MJ m-2y-1) gap-filled flux, reconstructed through MDS and PADL algorithms. 

 

   Uncertainty (MJ m-2y-1)  
Site ID / Year Model   

!Q   Within Between Total 95% CI ρ   
  MJ m-2y-1     1/2U            B1/2      2 !V 1/2   Lower Upper  
AT-Neu 2010 MDS 1018 16 

 
32 987 1050 

 
 

PADL 1007 16 3 33 974 1040 0.04 
AU-Cpr 2012 MDS 756 9 

 
18 738 774 

 
 

PADL 787 9 2 18 768 805 0.04 
AU-How 2011 MDS 2403 27 

 
53 2350 2456 

 
 

PADL 2475 27 10 57 2418 2533 0.12 
DK-Sor 2009 MDS 1182 21 

 
42 1141 1224 

 
 

PADL 1189 21 2 42 1146 1231 0.01 
FI-Hyy 2007 MDS 852 11 

 
23 829 875 

 
 

PADL 854 12 2 23 831 877 0.02 
FR-Pue 2008 MDS 1068 13 

 
26 1042 1094 

 
 

PADL 1069 13 2 27 1042 1095 0.02 
GF-Guy 2008 MDS 3399 35 

 
71 3328 3470 

 
 

PADL 3483 36 13 76 3407 3559 0.11 
IT-CA1 2012 MDS 1430 17 

 
33 1397 1464 

 
 

PADL 1424 17 3 35 1389 1459 0.03 
US-Los 2006 MDS 589 10 

 
20 569 609 

 
 

PADL 585 10 1 20 565 606 0.00 
US-Ne2 2012 MDS 1776 35 

 
70 1706 1846 

 
 

PADL 1799 35 3 70 1729 1869 0.01 
 

 

  



Table 2S. Annual budget estimates, associated uncertainties, and fraction of missing information ρ  of 
Sensible Heat (H, MJ m-2y-1) gap-filled flux, reconstructed through MDS and PADL algorithms. 

 

   Uncertainty (MJ m-2y-1)  
Site ID / Year Model 	 

!Q   Within Between Total 95% CI  ρ   
  (MJ m-2y-1) 1/2U           1/2B      2 !V 1/2   Lower Upper  
AT-Neu 2010 MDS 96 9 

 
18 78 113 

 
 

PADL 88 9 4 20 67 108 0.15 
AU-Cpr 2012 MDS 2169 32 

 
65 2104 2233 

 
 

PADL 2187 32 2 65 2123 2252 0.00 
AU-How 2011 MDS 1294 22 

 
44 1250 1337 

 
 

PADL 1284 22 4 45 1238 1329 0.04 
DK-Sor 2009 MDS 61 22 

 
44 17 105 

 
 

PADL 40 22 1 44 -4 85 0.00 
FI-Hyy 2007 MDS 495 18 

 
36 459 530 

 
 

PADL 519 18 3 36 483 555 0.02 
FR-Pue 2008 MDS 617 24 

 
48 568 665 

 
 

PADL 708 24 3 49 660 757 0.02 
GF-Guy 2008 MDS 763 17 

 
35 729 798 

 
 

PADL 751 18 4 36 714 787 0.05 
IT-CA1 2012 MDS 1285 27 

 
55 1230 1340 

 
 

PADL 1332 27 2 55 1277 1387 0.01 
US-Los 2006 MDS 810 16 

 
32 778 843 

 
 

PADL 803 16 2 33 770 836 0.01 
US-Ne2 2012 MDS 737 27 

 
54 684 791 

 
 

PADL 727 27 3 54 673 781 0.01 
 

  



 

Figure 1S. Average in-sample bias error (BE, -2Wm ), mean absolute error (MAE, -2Wm ), coverage 
rate (CR, %) and 95% confidence interval width (W,  

-2Wm ) of Latent Heat (LE) gap-filled flux, for 
the MDS algorithm and the three proposed MI models, separately for daytime and nighttime subsets 
(defined according to a global radiation threshold of -210 Wm ). The right and left panels show a 
graphical visualization of Nemenyi test, where dots represent the average ranks for each imputation 
model, while horizontal lines represent the confidence interval (CI) built on the basis of the critical 
difference (CD) value. Dashed vertical grey lines indicate the CI associated with the best ranking 
method. For any imputation model such that its average rank is outside these bounds and the Friedman 
ANOVA is significant (filled dot), there is evidence of significant difference in the mean performance 
with respect to the best method. 

 
 

  



 

 

Figure 2S. Average in-sample bias error (BE, -2Wm ), mean absolute error (MAE, -2Wm ), coverage 
rate (CR, %) and 95% confidence interval width (W, -2Wm ) of Sensible Heat (H) gap-filled flux, for 
the MDS algorithm and the three proposed MI models, separately for daytime and nighttime subsets 
(defined according to a global radiation threshold of -210 Wm ). The right and left panels show a 
graphical visualization of Nemenyi test, where dots represent the average ranks for each imputation 
model, while horizontal lines represent the confidence interval (CI) built on the basis of the critical 
difference (CD) value. Dashed vertical grey lines indicate the CI associated with the best ranking 
method. For any imputation model such that its average rank is outside these bounds and the Friedman 
ANOVA is significant (filled dot), there is evidence of significant difference in the mean performance 
with respect to the best method. 

 

  



 

Figure 3S. Comparison of the out-of-sample bias error (BE) of Latent Heat (LE, -2Wm ) gap-filled flux, 
for the MDS algorithm and MLR, ADL and PADL imputation models, in the 5 synthetic gap scenarios 
and separately for daytime and nighttime subsets. The boxplots under each scenario were obtained by 
10 simulations for each benchmark site, giving a total of 100 simulations for each imputation model. 
The right and left panels show a graphical visualization of Nemenyi test, where dots represent the 
average ranks for each imputation model, while horizontal lines represent the confidence interval (CI) 
built on the basis of the critical difference (CD) value. Dashed vertical grey lines indicate the CI 
associated with the best ranking method. For any imputation model such that its average rank is outside 
these bounds and the Friedman ANOVA is significant (filled dot), there is evidence of significant 
difference in the mean performance with respect to the best method. 



 

Figure 4S. Comparison of the out-of-sample mean absolute error (MAE) of Latent Heat (LE, -2Wm ) 
gap-filled flux, for the MDS algorithm and MLR, ADL and PADL imputation models, in the 5 
synthetic gap scenarios and separately for daytime and nighttime subsets. The boxplots under each 
scenario were obtained by 10 simulations for each benchmark site, giving a total of 100 simulations for 
each imputation model. The right and left panels show a graphical visualization of Nemenyi test, where 
dots represent the average ranks for each imputation model, while horizontal lines represent the 
confidence interval (CI) built on the basis of the critical difference (CD) value. Dashed vertical grey 
lines indicate the CI associated with the best ranking method. For any imputation model such that its 
average rank is outside these bounds and the Friedman ANOVA is significant (filled dot), there is 
evidence of significant difference in the mean performance with respect to the best method. 



 

Figure 5S. Comparison of the out-of-sample bias error (BE) of Sensible Heat (H, -2Wm ) gap-filled 
flux, for the MDS algorithm and MLR, ADL and PADL imputation models, in the 5 synthetic gap 
scenarios and separately for daytime and nighttime subsets. The boxplots under each scenario were 
obtained by 10 simulations for each benchmark site, giving a total of 100 simulations for each 
imputation model. The right and left panels show a graphical visualization of Nemenyi test, where dots 
represent the average ranks for each imputation model, while horizontal lines represent the confidence 
interval (CI) built on the basis of the critical difference (CD) value. Dashed vertical grey lines indicate 
the CI associated with the best ranking method. For any imputation model such that its average rank is 
outside these bounds and the Friedman ANOVA is significant (filled dot), there is evidence of 
significant difference in the mean performance with respect to the best method. 



 

Figure 6S. Comparison of the out-of-sample mean absolute error (MAE) of Sensible Heat (H, -2Wm ) 
gap-filled flux, for the MDS algorithm and MLR, ADL and PADL imputation models, in the 5 
synthetic gap scenarios and separately for daytime and nighttime subsets. The boxplots under each 
scenario were obtained by 10 simulations for each benchmark site, giving a total of 100 simulations for 
each imputation model. The right and left panels show a graphical visualization of Nemenyi test, where 
dots represent the average ranks for each imputation model, while horizontal lines represent the 
confidence interval (CI) built on the basis of the critical difference (CD) value. Dashed vertical grey 
lines indicate the CI associated with the best ranking method. For any imputation model such that its 
average rank is outside these bounds and the Friedman ANOVA is significant (filled dot), there is 
evidence of significant difference in the mean performance with respect to the best method. 


