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ABSTRACT. Recently the issue of air quality has become a global public health concern. As air pollution has been reported as the 

largest single environmental health risk in the world, analysis and prediction of air quality is increasingly important. Normally, either 

statistical models or CTM (“deterministic chemistry-transport”) models are used for forecasting air PM (“particulate matter”) levels. 

Actually, hourly air quality fluctuation is also one time-series. Compared with commonly used deterministic photochemical air quality 

models, data-driven or time-series-based modeling is simpler and can also perform well even be more accurate. In this study, a called 

DCT(“discrete cosine transform”)-based least-squares predictive model is proposed for forecasting hourly AQI (“air quality index”) 

from time-series analysis or data-driven modeling perspective. The proposed DCT-based predictive method is implemented in 

combination with the least-squares method to compute the called least-squares-optimum DCT coefficients for forecast modeling on the 

basis of finite hourly AQI observations. The proposed method yields one good result of average 93.24% predictive accuracy in forecast 

experiments at five monitoring stations in Xiangtan of China. Experimental results and analysis of performance comparisons of the 

proposed DCT-based least-squares predictive model with the classical BP-ANN model, the Fourier-series-based least-squares pre- 

dictive model and the ARIMA model indicate that for the same tasks of forecasting hourly AQI fluctuations, the proposed DCT-based 

predictive model outperforms the former two competitive models and performs slightly better than or comparable to the ARIMA 

model. It is indicated that the hourly AQI fluctuations can be well forecasted by the proposed DCT-based least-squares predictive 

model with using about 12-term least-squares-optimum DCT coefficients. 
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1. Introduction 

Air quality is intimately associated with human health. 

Nowadays air pollution has been recognized as a major source 

of health risk (Briggs, 2003) and one of the significant factors 

to the environmental burden of disease throughout the world. 

Human (and animal) health will be affected by exposure to 

high concentrations of air pollutants. Recently, it is reported 

by the World Health Organization (WHO, 2014) that as one 

result of air pollution exposure, around 7 million people died 

in 2012, which became one in eight of total global deaths. 

Thus air pollution has now been recognized as the largest sin- 

gle environmental health risk in the world (WHO, 2014). Ac- 

cordingly, the issue of air quality has become one public con- 

cern (Yang, 2014). The AQI (“air quality index”), also known 

as the API (“air pollution index”), the PSI (“pollutant standard 

index”) (Cheng et al., 2007) and the AQHI (“air quality health 

index)” (Chen et al., 2013; Wong et al., 2013), is a quantity 

commonly used for describing air quality. It is an index for 
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reporting quality of ambient air at one location and severity 

level of air pollution to the public. Generally, the higher AQI, 

the higher probability of the public affected by adverse health 

effects will be. Addressing limitations of the conventional 

AQI such as high levels of subjectivity, Sowlat et al. (2011) 

presented a new fuzzy-logic-based AQI called the FAQI. In 

view of adverse effects caused by the coexistence of all the 

pollutants, Plaia et al. (2013) proposed one called multi-pol- 

lutant-multisite API. For evaluating the air quality impact of 

environmental policies, Fassò (2013) presented an EM-algorithm- 

based spatio-temporal model. Benis et al. (2013) designed one 

multi-objective and multi-pollutant sensitive AQMN (“air qual- 

ity monitoring net work”) using an integrated optimization 

approach. For the regional air pollution management and con- 

trol, Liu et al. (2015) presented a called ISRAQM (“inexact 

stochastic robust air quality management”) model. We see that 

the AQI, which is an index for describing air quality and easy 

for the public to understand, has been one of daily concerns of 

the general public. Accordingly, analysis and prediction of air 

quality becomes increasingly important. 

Human actives and meteorological factors may largely 

affect the particle pollution in the air. Normally, either sta- 

tistical models or CTM (“deterministic chemistry-transport”) 

models are used for forecasting the air PM (“particulate mat- 

ter”) levels (Konovalov et al., 2009). Actually, hourly air qual- 
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ity fluctuation is also one time-series. The RT-AQF (“real-time 

air quality forecasting”) (Zhang et al., 2012) has been a new 

inter-disciplinary research with unprecedented scientific, tech- 

nical, and computational challenges being proposed. Since the 

1970s, a variety of RT-AQF techniques and tools have been 

employed to predict air pollution in urban areas. Among the 

various techniques, empirical approaches and statistical mod- 

els based on historical air quality and meteorological data are 

the representative ones. From the viewpoint of time-series 

analysis or data-driven modeling, mathematical methods (Chat- 

terjee et al., 2000; Chatfield, 2004; StatSoft, 2013) used for 

time-series analysis mainly include the classical time-series 

analysis technique in statistics and the computational intel- 

ligence. The classical time-series analysis is one standard sta- 

tistical technique. The AR (“autoregressive”) model, the MA 

(“moving average”) model, the ARMA (“autoregressive– 

moving-average”) model, and the ARIMA (“autoregressive 

integrated moving average”) model are classical statistical 

models in this direction. Stationarity is an important assump- 

tion in the classical time-series analysis technique. That is, the 

underlying stochastic process is assumed to be stationary, and 

then the process may be adequately depicted by the lower 

moments of its probability distribution. For daily AQI predict- 

tion, Kumar and Goyal (2011) tested three statistical models 

(the ARIMA, PCR (“principal component regression”) and 

one combination model of both) and indicated that the last 

combination model performed better than the former two 

ones. ANN (“artificial neural network”) is one of the most 

popular and promising subjects in artificial and computational 

intelligence areas. It has been pervasively used in various 

applications with well forecast performances being reported. 

He and Deng (2012) presented one hybrid model of ARIMA 

and ANN to predict the PM concentration in Changsha of 

China, and showed that compared with the single ARIMA 

model, the hybrid model improved the PM10 prediction accu- 

racy. Rahman et al. (2013) used the ARIMA, ANN and FTS 

(“fuzzy time-series”) for predicting API values in Malaysia, 

and showed that the ANN performed better than the FTS and 

the ARIMA. Kolehmainen et al. (2001) evaluated two princi- 

pally different ANNs in three ways related to periodic compo- 

nents, and showed that compared with the ways of only using 

the periodic components or removing periodic components, 

best forecast results were achieved by the way of directly 

using a multi-layer ANN and the original data, and then 

concluded that combinations of the periodic regression method 

and neural algorithms did not exhibit any advantage over the 

direct application of neural algorithms. Niska et al. (2004) 

presented at a study on hourly NO2 concentration prediction at 

one busy urban traffic monitoring station by using a multi- 

layer ANN combined with a parallel GA (“genetic algorithm”), 

and then argued the limitation of the ANN technique that 

evaluation of an ANN model was a computationally expen- 

sive step. On the basis of 3 statistical criteria, Kukkonen et al. 

(2003) evaluated five ANN models, a linear statistical model 

and a deterministic modeling system for forecasting urban 

NO2 and PM10 concentrations, and then argued that the cur- 

rently available ANN models were neither applicable for fore- 

casting spatial concentration distributions in urban areas, nor 

for evaluating air pollution abatement scenarios for future years. 

Grell and Baklanov (2011) argued that integrated modeling 

systems, which allow two-way interactions of physical and 

chemical processes, would provide new opportunities for the 

migration of weather and air quality prediction. Nevertheless, 

Benis et al. (2013) argued that with meaningful advances in 

computational technologies, a new focus would be shifted to 

sophisticated 3-D RT-AQF models (Zhang et al., 2012), which 

are expected to enhance people’s understanding of the under- 

lying complex interplay of meteorology, emission, and chem- 

istry from global to urban scales in the real atmosphere. 

In this study, a DCT-based least-squares predictive model 

is proposed for hourly AQI forecasting from the viewpoint of 

time-series analysis or data-driven modeling. Compared with 

commonly used deterministic photochemical air quality models, 

data-driven or time-series-based models are simpler and can 

also perform well even be more accurate (Sun et al., 2013). 

From the perspective of time-series analysis or data-driven mod- 

eling, fluctuations of daily 24-hour air quality, which may be in- 

fluenced by various factors, can also be described as one time- 

series. Then there are two basic goals included in its time- 

series analysis (StatSoft, 2013): (a) try to reveal nature of the 

phenomenon depicted by the observation sequence, and (b) try 

to predict future fluctuations on the basis of the observations 

available. Fourier-based technology is a powerful tool for time- 

series analysis. DCT refers to “discrete cosine transform”. It is 

also a Fourier-related transform. This transform technique has 

been widely used in signal and image processing (Ge et al., 

2008). It owns remarkable properties on optimal decorrelation 

and energy compaction, asymptotically approaching the KLT 

(“Karhunen-Loève transform”) (Zheng et al., 2011). However, 

Fourier-based analysis in its conventional form cannot be straight- 

ly applied to prediction (Yang, 2013, 2014). In this study, a 

DCT-based predictive model extended in the least-squares 

sense is introduced for hourly AQI fluctuation prediction. The 

DCT-based least-squares forecast modeling, which was applied 

to the electric load forecasting (Yang, 2016) and the hourly 

WLF (“water-level-fluctuation”) forecasting (Yang, 2017), is 

implemented in combination with the least-squares method to 

compute the called least-squares-optimum DCT coefficients 

on the basis of finite hourly AQI observations. Finally, experi- 

ments and result analysis are also presented. Experimental re- 

sult and performance analysis of the proposed DCT-based least- 

squares predictive model with other competitive models indi- 

cate potentiality of the proposed model. It is indicated that con- 

cise and well-formed may be one major advantage of the pro- 

posed DCT-based least-squares predictive model for hourly 

AQI forecasting. 

2. The Proposed Methodology 

2.1. Problem Description 

Fluctuation of daily 24-hour air quality, which may be in- 

fluenced by varied factors, can also be described as one time- 

series. DCT is a Fourier-related transform (Zheng et al., 2011). 

The most common 1-D (“one-dimensional”) DCT definition 



Z. C. Yang / Journal of Environmental Informatics 36(1) 58-69 (2020) 

 

60 

for a sequence (discrete time-series) x(n) of length N (n = 1, 2, 

…, N) is defined as: 
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The transform coefficients of f(k) (n = 1, 2, …, N) (Equa- 

tion (1)) are called the DCT coefficients. Similarly, the inverse 

DCT (IDCT) is defined as:  
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In the literature, the value of f(k) (k = 1) may be referred 

to as the DC Coefficient and the other ones of f(k) (k = 2, …, 

N) are called the AC Coefficients (Sayood and Borkenhagen, 

1991). 

From the above definitions (Equations 1 and 2), it is indi- 

cated that both the sequence (discrete time-series) x(n) (n = 1, 

2, …, N) and the DCT transform coefficients: f(k) (k = 1, 2, 

…, N) are the same size of N-length. If only a limited number 

N0 (< N) of hourly AQI observations over a certain period 

time: x(n) (n = 1, 2, …, N0) (N0 < N) available, we now focus 

on how to extend the DCT model (Equations 1 and 2) to pre- 

dict its future fluctuation at its next time point (x(n) (n = N0 + 

1)) or at its subsequent points in time: x(n) (n = N0 + 1, …, N). 

However, as N0 < N, the principal problem is how to compute 

the DCT coefficients of f(k) for forecast modeling (Equations 

1 and 2) on the basis of the limited N0 (N0 < N) observations. 

Though only N0 (N0 < N) observations available, our first 

thought may be to directly compute the DCT coefficients f(k) 

by its original definition of Equation 1 (f′(k) = w(k) ∑ x(n)
N0

n = 1  

cos[π(2n - 1)(k - 1)/2N]), and then use its inverse transforma- 

tion (Equation (2)) (x′(n) = ∑ f'(k)M
k = 1 w(k) cos[π(2n - 1)(k - 1)/ 

2N]) (M ≤ N0) to predict its future fluctuation. For instance, by 

direct computation of f′(k) and x′(k) using the original define- 

tions of Equations 1 and 2, Figure 1 illustrates results of one- 

step-forecast (N0 = N - 1 = 23, M = 11) for 24-hour AQI 

(measured in the U.S.A standard) fluctuations at the moni- 

toring station of “Bantang” in Xiangtan of China on 2016-04 

-23 (00:00-23:00) (GBMW, 2016). Where parameters of the 

forecast modeling are set as N0 = N - 1 = 23 and M = 11. That 

is, we use its N0 = N - 1 = 23 previous hourly AQI observa- 

tions: x(n) (n = 1, 2, …, N0) to directly compute the M-term 

DCT coefficients f′(k) (k = 1, 2, …, M) (M = 11) by the orig- 

inal definition (Equation 1) (i.e., f′(k) = w(k)∑ x(n)
N0

n = 1  cos[π 

(2n - 1)(k - 1)/2N]), and then we employ the DCT coefficients 

f′(k) to model and predict (Equation 2) (i.e., x′(n) = ∑ f'(k)M
k = 1  

w(k)cos[π(2n - 1)(k - 1)/2N]) the following one in the last hour 

of the day. 

In Figure 1, it is shown that the forecasting result does 

not fit well with but deviates significantly from the AQI observa- 

tion value. 

Moreover, let us examine the DCT coefficients f′(k) by 

direct computation using the original definition (Equation 1) 

(N0 = 23, N = 24) based on the previous N0 = 23 hourly AQI 

observations. Figure 2 plots comparisons of the original 11- 

term (k = 1, 2, …, M) (M = 11) DCT coefficients f(k) (Equa- 

tion (1)) computed on the basis of the full 24-hourly AQI observa- 

tions (N0 = N = 24) on 2016-4-23 (00:00-23:00) with the ones 

of f′(k) (k = 1, 2, …, M) (M = 11) approximated by direct com- 

putation using the original definition (Equation 1) (N0 = 23, N 

= 24) on the basis of its previous N0 = 23 hourly AQI ob- 

servations. 

 

 
 

Figure 1. Plot of result of one-step-forecast (N0 = N – 1 = 23) 
for 24-hour AQI fluctuations at the monitoring station of 

“Bantang” in Xiangtan, China on 2016-04-23 (00:00 - 23:00) 
(M = 11) by direct computation using the DCT original 

definitions (Equations 1 and 2). 
 

 
 

Figure 2. Comparisons of the 11-term (M = 11) DCT 
coefficients (Equation 1) calculated using full 24-hourly AQI 

observations (N = 24) on 2016-04-23 (00:00-23:00) with the 
ones approximated by the original definition (Equation 1) on 

the basis of its previous N0 = 23 hourly AQI observations, 
respectively. 

 

From Figure 2, it is also demonstrated that the 11-term 

(M = 11) DCT coefficients f′(k) approximated by direct computa- 

tion using the original definition (Equation 1) (N0 = 23, N = 

24) on the basis of the previous N0 = 23 hourly AQI observa- 
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tions does not fit well with the original DCT coefficients f(k) 

(Equation 1) (N0 = N = 24) which are calculated on the basis 

of the full 24-hourly AQI observations on 2016-4-23 (00:00- 

23:00). 

 

2.2. The Proposed DCT-Based Least-Squares Predictive 

Model 

How to compute the DCT coefficients for forecast mod- 

eling on the basis of the limited number N0 (< N) of hourly 

AQI observations, we now try to solve the problem in the least- 

squares sense. An extended version of the DCT model (Equa- 

tion 2) called the DCT-based least-squares predicttive model 

(Equation 3) is proposed as follows:  
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where the called least-squares-optimum DCT coefficients f̂(k) 

(k = 1, 2, …, M) for the building DCT-based least-squares pre- 

dictive model (Equation 3) will be determined on the basis of 

the finite N0 (N0 < N) observations: x(n) (n = 1, 2, …, N0) to 

yield x̂(n) (Equation 3) most fitting the given x(n) (n = 1, 2, 

…, N0) (N0 < N) in the least-squares sense. Note that to effect- 

tively get the M-term DCT coefficients f(k) (k = 1, 2, …, M) 

on the basis of the finite N0 < N observations, normally, we set 

M ≤ N0 < N. 

The optimum solution in the least-squares sense of Equa- 

tion 3 means that sum E2 of squared deviations (residuals, 

errors) en is to be one minimum:  
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To minimize Equation 4 with respect to f̂(k)(∂E2 ∂f̂(k)⁄ )= 

0, k = 1, 2, …, M), it results in:  
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By denoting c(m, n) = w(m)cos[π(2n - 1)(k - 1)/2N], it 

follows:  
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For brevity of mathematical expression, we define:  
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From Equations 6 and 7, it follows:  
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Note that for m = 1, 2, …, M, we have ∑ c(m, n)
N0

n = 1  

∑ f̂M
k = 1 (k)c(k, n) =
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Finally, from Equation 8, we can get the least-square- 

optimum M-term DCT coefficients f̂(k) (k = 1, 2, …, M) on 

the basis of the finite N0 observations x(n) (n = 1, 2, …, N0) 

(N0 < N) by:  
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With using the least-squares-optimum DCT coefficients 

(Equation 9) to build the DCT-based least-squares predictive 

model (Equation 3), we can now predict future fluctuation of 

the AQI at its next time point x̂(n) (n = N0 + 1) or at its subse- 

quent points in time: x̂(n) (n = N0 + 1, …, N) by the DCT- 

based predictive model (Equation 3). 

In summary, algorithm of the proposed DCT-based least- 

squares predictive model (Equation 3) for forecasting hourly 

AQI fluctuation is composed of the following steps: 

1. Put N = 24 for describing hourly AQI fluctuation as 24 

hours in each day. 

2. Given finite N0 (N0 < N) hourly AQI observations: x(n) (n 

= 1, 2, …, N0), we are to forecast future fluctuation of the 

AQI at its next time point x̂(n) (n = N0 + 1)) or at its 

subsequent points in time: x̂(n) (n = N0 + 1, …, N).  

3. To compute the least-squares-optimum M-term DCT coef- 

ficients: f̂(k) (k = 1, 2, …, M) on the basis of the finite 

observations: x(n) (n = 1, 2, …, N0) by
1M f

0
( M NC

0 0 0

1

1)T

N M M N N



  C C x (Equations 6 to 9). 

4. With the least-squares-optimum DCT coefficients f̂(k) (k 

= 1, 2, …, M) (Equation 9) available, future fluc- tuation 

of the hourly AQI at its next time point x̂(n) (n = N0 + 1) 

or at its subsequent points in time (n = N0 + 1, …, N) can 

be predicted by the DCT-based predictive model: x̂(n) = 
∑ f̂M
k = 1 (k)w(k)cos[π(2n - 1)(k - 1)/2N] (Equation 3). 

For instance, Figure 3 illustrates results of one-step-fore- 

cast (N0 = N – 1 = 23, M = 12) for the 24-hour AQI (measured 

in the U.S.A standard) fluctuations at the monitoring station of 
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“Bantang” in Xiangtan of China on 2016-04-23 (00:00-23:00) 

(GBMW, 2016) by using the proposed DCT-based least- 

squares predictive model (Equations 3 and 9). Where parame- 

ters of the forecast modeling (Equations 3 and 9) are set as N0 

= N – 1 = 23 and M = 11. That is, we use its N0 = N – 1 = 23 

previous hourly AQI observations: x(n) (n = 1, 2, …, N0) to 

compute the least-squares-optimum M-term DCT coefficients 

f̂(k) (k = 1, 2, …, M) (M = 11) (Equation 9) to model and fore- 

cast (Equation 3) the hourly AQI in the last hour of the day. 
 

 
 

Figure 3. Plot of result of one-step-forecast (N0 = N – 1 = 23) 
for 24-hour AQI fluctuations at the monitoring station of 

“BanTang” in Xiangtan, China on 2016-04-23 (00:00-23:00) 
by the DCT-based least-squares predictive model (Equations 3 

and 9) by the setting of (M = 11). 
 

 
 

Figure 4. Comparisons of the 11-term (M = 11) DCT 
coefficients (Equation 1) calculated on the basis of the full 24- 

hourly AQI observations (N = 24) on 2016-4-23 (00:00-23:00) 
and ones approximated in the least-squares sense (Equation 9) 

on the basis of its previous N0 = 23 hourly AQI observations, 
respectively. 

 

For the same prediction task, compared with the forecast- 

ing results (Figure 1) by direct computation using the original 

definitions (Equations 1 and 2), the prediction results (Figure 

3) by the proposed DCT-based least-squares predictive model 

(Equations 3 and 9) agree well with the hourly AQI observa- 

tions. 

Furthermore, Figure 4 plots comparisons of the least- 

squares-optimum 11-term DCT coefficients f̂(k) (k = 1, 2, …, 

M) (M = 11) (Equation 9) N0 = N – 1 = 23 approximated in the 

least-squares sense on the basis of the previous N0 = 23 hourly 

AQI observations with the original ones f(k) (k = 1, 2, …, M) 

(M = 11) (Equation 1) (N0 = N = 24) computed on the basis of 

the full 24-hourly AQI observations on 2016-4-23 (00:00- 

23:00), respectively. 

In comparison with the approximations of the DCT coeffi- 

cients f′(k) (k = 1, 2, …, M) (M = 11) (Figure 2) by direct 

computation based on the previous N0 = 23 hourly AQI ob- 

servations using the original definition, it is shown (Figure 4) 

that the called least-squares-optimum 11-term DCT coeffi- 

cients f̂(k) (k = 1, 2, …, M) (M = 11) (Equation 9) approxi- 

mated in the least-squares sense (Equation 9) on the basis of the 

previous N0 = 23 hourly AQI observations fit well with the 

original DCT f(k) (k = 1, 2, …, M) (M = 11) (Equation 1) 

computed on the basis of the full 24-hourly AQI observations 

(N = 24) on 2016-4-23 (00:00-23:00). 

The above results also prove feasibility of the proposed 

DCT-based least-squares predictive model (Equations 3 and 

9). Meanwhile, the DCT coefficients displayed in Figure 4 

also confirms the strong “energy compaction” property of 

DCT (Zheng et al., 2011). That is, value of the DCT coeffi- 

cient f(k) (k = 1) (i.e., the DC coefficient) is much larger than 

values of the other DCT coefficients f(k) (k = 2, …, 12) (i.e., 

the AC coefficients) while the lower AC coefficients f(k) (such 

as, k = 2, 3 in Figure 4) are also much larger than the higher 

AC coefficients f(k) (k ≥ 4).  

Furthermore, for the same prediction instance, some illus- 

trations of different settings (M = 12, 5, 7, 20, and 22) of para- 

meter M (M-term least-squares-optimum DCT coefficients) for 

the proposed the DCT-based least-squares predictive model are 

presented in Figures 5 to 9, respectively. 
 

 
 

Figure 5. Plot of result of one-step-forecast (N0 = N – 1 = 23) 

for 24-hour AQI fluctuations at the monitoring station of 
“Bantang” in Xiangtan, China on 2016-04-23 (00:00- 23:00) 

by the DCT-based least-squares predictive model (Equations 3 
and 9) with the setting of (M = 12). 
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Figure 6. Plot of result of one-step-forecast (N0 = N – 1 = 23) 
for 24-hour AQI fluctuations at the monitoring station of 

“Bantang” in Xiangtan, China on 2016-04-23 (00:00-23:00) 
by the DCT-based least-squares predictive model (Equations 3 

and 9) with the setting of (M = 5). 
 

 
 

Figure 7. Plot of result of one-step-forecast (N0 = N – 1 = 23) 

for 24-hour AQI fluctuations at the monitoring station of 
“Bantang” in Xiangtan, China on 2016-04-23 (00:00-23:00) 

by the DCT-based least-squares predictive model (Equations 3 
and 9) with the setting of (M = 7). 

 

From Figure 3 and Figures 5 to 9, it is shown that the 

hourly AQI fluctuations can be well predicted by the proposed 

DCT-based least-squares predictive model (Equation 3) with 

using about 12-term (M = 11, 12) least-squares-optimum DCT 

coefficients. One explanation for the other settings of (M = 5, 

7) and (M = 20, 22) may be that the former ones of (M = 5, 7) 

and the latter ones of (M = 20, 22) seems to be “under-fitting” 

and “over-fitting”, respectively. 

3. Case Study 

Firstly, the proposed DCT-based least-squares predictive 

model (Equation 3) is applied to forecast hourly AQI (mea- 

sured in the U.S.A standard (GBMW, 2016)) fluctuations at 

five monitoring stations during six random 48-hour periods 

from 2016-4-22 9:00 to 2016-4-24 8:00, from 2016-4-22 

17:00 to 2016-4-24 16:00, and from 2016-4-23 8:00 to 2016- 

4-25 7:00, 2016-5-7 4:00 to 2016-5-12 3:00, 2016-5-25 5:00 

to 2016-5-31 4:00 and 2016-6-1 5:00 to 2016-6-8 4:00, re- 

spectively. Locations of the five monitoring stations (“Yue- 

tang”, “Central”, “Bantang”, “Jianglu”, “Keda”) in Xiangtan 

of China are illustrated in Figure 10. 
 

 
 

Figure 8. Plot of result of one-step-forecast (N0 = N – 1 = 23) 

for 24-hour AQI fluctuations at the monitoring station of 
“Bantang” in Xiangtan, China on 2016-04-23 (00:00- 23:00) 

by the DCT-based least-squares predictive model (Equations 3 
and 9) with the setting of (M = 20). 

 

 
 

Figure 9. Plot of result of one-step-forecast (N0 = N – 1 = 23) 
for 24-hour AQI fluctuations at the monitoring station of 

“Bantang” in Xiangtan, China on 2016-04-23 (00:00-23:00) 
(M = 22) by the DCT-based least-squares predictive model 

(Equations 3 and 9) by the setting of (M = 22). 
 

Hourly AQI observations of the five monitoring stations 

were published by the called Green-Breath monitoring web- 

 

0 5 10 15 20 25
40

50

60

70

80

90

100

110

Bantang(M = 5, N
0
 = 23)

 Index of Hours(2016.04.23 00:00 - 2016.04.23 23:00)

 A
ir

 Q
u

a
li

ty
 I

n
d

e
x
 

 

 

 AQI

 Model Fitting (Equation 3)                         

 (DCT Approximated in the Least-Squares (Equation 9)

 Forecast

 

0 5 10 15 20 25
40

50

60

70

80

90

100

110

Bantang(M = 7, N
0
 = 23)

 Index of Hours(2016.04.23 00:00 - 2016.04.23 23:00)

 A
ir

 Q
u

a
li

ty
 I

n
d

e
x
 

 

 

 AQI

 Model Fitting (Equation 3)                         

 (DCT Approximated in the Least-Squares (Equation 9)

 Forecast

 

0 5 10 15 20 25
30

40

50

60

70

80

90

100

110

120

Bantang(M = 20, N
0
 = 23)

 Index of Hours(2016.04.23 00:00 - 2016.04.23 23:00)

 A
ir

 Q
u

a
li

ty
 I

n
d

e
x
 

 

 

 AQI

 Model Fitting (Equation 3)                         

 (DCT Approximated in the Least-Squares (Equation 9)

 Forecast

 

0 5 10 15 20 25
30

40

50

60

70

80

90

100

110

120

130

Bantang(M = 22, N
0
 = 23)

 Index of Hours(2016.04.23 00:00 - 2016.04.23 23:00)

 A
ir

 Q
u

a
li

ty
 I

n
d

e
x
 

 

 

 AQI

 Model Fitting (Equation 3)                         

 (DCT Approximated in the Least-Squares (Equation 9)

 Forecast



Z. C. Yang / Journal of Environmental Informatics 36(1) 58-69 (2020) 

 

64 

site of “www.pm25.com” in China (GBMW, 2016). Based on 

N0 = 23 hourly AQI observations and by using two different 

(M = 12, 11) least-squares-optimum DCT coefficients (Equa- 

tion 9) in forecast modeling, prediction results of the pro- 

posed DCT-based model (Equation 3) (N = 24) are presented 

as follows. 
 

 
 

Figure 10. Illustration of locations of the 5 monitoring 

stations (“Yuetang”, “Central”, “Bantang”, “Jianglu”, “Keda”) 
in Xiangtan of China. 

 

With using 12-term least-squares-optimum DCT coeffi- 

cients (M = 12) (Equations 6 and 9) in forecast modeling 

(Equation 3), Figure S1 plot results of 25 one-step-forecast 

(N0 = N – 1 = 23) for 48-hour AQI fluctuations at the monitor- 

ing station of “Yuetang” in Xiangtan of China from 2016- 

4-22 9:00 to 2016-4-24 8:00. Where parameters of the pro- 

posed DCF-based predictive model (Equations 3, 6 and 9) are 

set as N0 = N – 1 = 23 and M = 12. That is, at each step, we 

use its previous N0 = 23 hourly AQI observations to compute 

the least-squares-optimum M-term DCT coefficients f̂(k) (k = 

1, 2, …, M) (M = 12) (Equations 6 and 9) to model and predict 

(Equation 3) its following one, and then there are 25 one-step  

 

-forecast from 2016-4-22 9:00 to 2016-4-24 8:00. 

Under the same settings (N0 = 23, N = 24; M = 12) in 

forecast modeling (Equations 3, 6 and 9), results of 25 one- 

step-forecast for the 48-hour AQI fluctuations at the other 4 

monitoring stations (“Central”, “Bantang”, “Jianglu”, “Keda”) 

in Xiangtan, China from 2016-4-22 9:00 to 2016-4-24 8:00 

are listed in Tables 1 and S1, respectively. 

In the similar way and under the same settings of (N0 = 

23, N = 24; M = 12) for the proposed DCT-based forecast mod- 

eling (Equations 3, 6 and 9), results of 25 one-step-forecast 

for hourly AQI fluctuations at the five monitoring stations 

(“Yuetang” (demonstrated in Figure S2), “Central”, “Bantang”, 

“Jianglu”, “Keda”) in Xiangtan of China during the random 

48-hour period from 2016-4-22 17:00 to 2016-4-24 16:00 are 

listed in Tables 1 and S1, respectively. 

Similarly, with using 11-term least-squares-optimum DCT 

coefficients (M = 11) (Equations 6 and 9) for the proposed 

DCT-based forecast modeling (Equation 3) (N0 = 23, N = 24), 

results of 25 one-step-forecast for hourly AQI fluctuations at 

the five monitoring stations (“Yuetang” (demonstrated in Fig- 

ure S3), “Central”, “Bantang”, “Jianglu”, “Keda”) in Xiangtan 

of China during the random 48-hour period from 2016-4-23 

7:00 to 2016-4-25 6:00 are also listed in Tables 1 and S1, 

respectively. 

Moreover, in the similar way, forecasting results using 

the proposed DCF-based least-squares predictive model (Equa- 

tions 3 and 9) for 3 other random long periods (i.e., one ran- 

dom 120-hour period from 2016-5-7 4:00 to 2016-5-12 3:00, 

one random 144-hour period from 2016-5-25 5:00 to 2016-5- 

31 4:00 and one random 168-hour period form 2016-6-1 5:00 

to 2016-6-8 4:00) are presented as follows. 

Under the settings of (N0 = 23, N = 24; M = 12) for the 

proposed DCT-based forecast modeling (Equations 3 and 9), 

results of 97 one-step-forecast for hourly AQI fluctuations at 

the five monitoring stations (“Yuetang” (demonstrated in 

Figure S4), “Central”, “Bantang”, “Jianglu”, “Keda”) in Xiang- 

tan of China during the random 120-hour period from 

2016-5-7 4:00 to 2016-5-12 3:00 are also listed in Tables 1 

and S1, respectively. 

Table 1. Percents (%) of RMSE-to-Mean in Predicting the Hourly AQI Fluctuations by Using the Proposed DCT-Based 

Least-Squares Predictive Model 

Monitoring Station (N0 = 23, N = 24)  

(M = 11, 12) 

Central (%) Bantang (%) Jianglu (%) Keda (%) Yuetang (%) 

25 one-step-forecast  

(2016-4-22 9:00 to 2016-4-24 8:00)  

8.872 6.311 5.929 6.515 3.760 

25 one-step-forecast  

(2016-4-22 17:00 to 2016-4-24 16:00) 

8.329 6.303 5.310 5.896 3.481 

25 one-step-forecast  

(2016-4-23 7:00 to 2016-4-25 6:00) 

7.636 5.810 4.708 5.076 3.258 

97 one-step-forecast  

(2016-5-7 4:00 to 2016-5-12 3:00) 

8.677 8.239 6.517 5.012 4.622 

121 one-step-forecast  

(2016-5-25 5:00 to 2016-5-31 4:00) 

10.724 8.860 7.108 6.393 4.219 

145 one-step-forecast  

(2016-6-1 5:00 to 2016-6-8 4:00) 

12.832 9.617 9.099 7.373 6.330 
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Table 2. Percents (%) of RMSE-to-Mean in Forecasting the Hourly AQI Fluctuations by Using the BP-ANN Model 

Monitoring Station Central (%) Bantang (%) Jianglu (%) Keda (%) Yuetang (%) 

25 one-step-forecast 

(2016-4-22 9:00 to 2016-4-24 8:00) 

21.753 25.230 21.390 27.311 12.528 

25 one-step-forecast 

(2016-4-22 17:00 to 2016-4-24 16:00) 

15.538 16.009 12.932 14.007 17.335 

25 one-step-forecast 

(2016-4-23 7:00 to 2016-4-25 6:00) 

16.253 16.505 12.483 12.082 14.371 

97 one-step-forecast 

(2016-5-7 4:00 to 2016-5-12 3:00) 

39.253 37.689 34.555 34.673 32.573 

121 one-step-forecast 

(2016-5-25 5:00 to 2016-5-31 4:00) 

39.206 32.650 29.606 26.920 17.953 

145 one-step-forecast 

(2016-6-1 5:00 to 2016-6-8 4:00) 

37.367 37.786 35.918 31.520 28.699 

 

Under the settings of (N0 = 23, N = 24; M = 11) for the 

proposed DCT-based forecast modeling (Equations 3 and 9), 

results of 121 one-step-forecast for hourly AQI fluctuations at 

the five monitoring stations (“Yuetang” (demonstrated in Figure 

S3), “Central”, “Bantang”, “Jianglu”, “Keda”) in Xiangtan of 

China during the random 144-hour period from 2016-5-25 

5:00 to 2016-5-31 4:00 are listed in Tables 1 and S1, respect- 

tively. And in the same way, results of 145 one-step-forecast 

(N0 = 23, N = 24; M = 11) for hourly AQI fluctuations at the 

five monitoring stations (“Yuetang” (demonstrated in Figure 

S4), “Central”, “Bantang”, “Jianglu”, “Keda”) in Xiangtan of 

China during the random 168-hour period from 2016-6-1 5:00 

to 2016-6-8 4:00 are also listed in Tables 1 and S1, respect- 

tively. 

The experimental results (such as Figures S1 to S4) show 

that the forecasting results agree well with the hourly AQI 

fluctuations at the monitoring stations. 

4. Result Analyses and Discussions 

Performance analysis of the proposed DCT-based least- 

squares predictive model with the classical BP-ANN (“Feed- 

forward Backpropagation” ANN) model, the Fourier-series- 

based least-squares predictive model (Yang, 2013, 2014) and 

the ARIMA model for the same prediction tasks, limitation 

and advantage of the proposed DCT-based model are pres- 

ented in this section. 

 

4.1. RMSE-to-Mean-Based Analysis 

For the forecasting results of hourly AQI fluctuations at 

the five monitoring stations in Xiangtan of China during the 6 

random periods, Table 1 lists percentages (%) of RMSE-to- 

mean by using the proposed DCT-based least-squares predic- 

tive model (Equations 3 and 9) (N = 24, N0 = N – 1) (M = 11 

and 12), respectively. Where the RMSE = 2

1
( ( ) ( )) /

R

n
x n x n R




)  

(x̂(n) is the forecast value for x(n) at time point of n) refers to 

“root-mean-square-error”. It is also known as the standard de- 

viation of prediction error. Normalizing the RMSE can facili- 

tate the comparison between datasets or models with different 

scales. One common choice is to use the mean of the mea- 

sured data to normalize the RMSE, i.e., the RMSE-to-mean 

(the RMSE divided by mean of x(n)). 

Various factors may affect hourly AQI fluctuation, such 

as the temperature, light intensity, wind speed, humidity and 

so on. These parameters may be used in predicting the AQI 

fluctuation. From the viewpoint of time-series analysis or 

data-driven modeling, hourly AQI fluctuation implicating all 

its influential factors is also one time-series. Thus all the fac- 

tors influencing hourly AQI fluctuation are implicitly enclosed 

in its time-sequence. Then only the time-series data of hourly 

AQI is used in the proposed DCT-based predictive model 

(Equation 3) while other parameters are not directly in- 

volved in the proposed model. Hence the most widely used 

BP-ANN model can be taken as one of the most comparable 

competitive models. Performance comparisons of the pro- 

posed DCT-based least-squares predictive model (Equation 3) 

with the classical BP-ANN model are presented as follows. 

Many rule-of-thumb approaches for determining the prop- 

er number of neurons in the hidden layer of one ANN model 

have been reported, such as, the 3 simple rules (Heaton, 2005) 

(i.e., the number of hidden neurons may be (1) within the 

range of the sizes of the input layer and the output layer; (2) 

two-thirds of the input layer size plus the output layer size; (3) 

less than twice of the input layer size). Actually, the final 

selection of an ANN structure may come down to “trial-and- 

error” (Heaton, 2005). For the same prediction tasks and un- 

der the same condition (to use the given N0 previous obser- 

vations for training), the network structure of the BP-ANN 

model is chosen as “12-26-1”. The network structure of “12- 

26-1” denotes that there are 12 nodes in the input layer, 26 

nodes in the hidden layer, and one node in the output layer. 

The BP-ANN model uses the log-sigmoid activation function 

in the hidden layer. In terms of percentages (%) of RMSE-to- 

mean, Tables 2 and 3 list performance comparisons of the pro- 

posed DCT-based least-squares model with the BP-ANN mod- 

el for the same prediction tasks, respectively. 

The ANOVA (“analysis of variance”) is a parametric pro- 

cedure usually employed to identify whether or not significant 

differences exist between two or more group means. Nor- 

mally, the small p-value indicates that differences between the 

group means are highly significant (such as in Tables 4 and S3). 
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Table 3. Comparisons of Performance in Terms of Average RMSE-to-Mean for Forecasting the Hourly AQI Fluctuations by Using 
the Proposed DCT-Based Model and the BP-ANN Model 

Time period The Proposed DCT-based Model (%) The BP-ANN Model (%) 

25 one-step-forecast 

(2016-4-22 9:00 to 2016-4-24 8:00) 

6.277 21.642 

25 one-step-forecast 

(2016-4-22 17:00 to 2016-4-24 16:00) 

5.864 15.164 

25 one-step-forecast 

(2016-4-23 7:00 to 2016-4-25 6:00) 

5.298 14.339 

97 one-step-forecast 

(2016-5-7 4:00 to 2016-5-12 3:00) 

6.613 35.749 

121 one-step-forecast 

(2016-5-25 5:00 to 2016-5-31 4:00) 

7.461 29.267 

145 one-step-forecast  

(2016-6-1 5:00 to 2016-6-8 4:00) 

9.050 34.258 

Average RMSE-to-Mean 6.76 25.07 

Average Predictive Accuracy 93.24 74.93 

 
Table 4. Result of the ANOVA Statistical Test for Performances between the Proposed DCT-Based Model and the BP-ANN 

Model for the Same Forecasting Tasks 

Source of Variation Sum of Squares Degree of freedom Mean Squares F P-value 

Between 0.10057 1 0.10057 22.347 8.075 × 10-4 

Within 0.04500 10 0.0045003   

Total 0.14557 11    

 

In terms of the average RMSE-to-mean (Table 3), result of the 

ANOVA statistical test for performances between the pro- 

posed DCT-based least-squares predictive model and the BP- 

ANN model for the same prediction tasks is listed in Table 4. 

From Tables 3 and 4, the reported small p-values (signi- 

ficant level) 8.075 × 10-4 < 0.1 further confirms that the pro- 

posed DCT-based least-squares predictive model outperforms 

the BP-ANN for the same tasks of forecasting the AQI fluc- 

tuations. 

The DCT is a Fourier-related transform. So the proposed 

DCT-based least-squares predictive model and the Fourier- 

series-based least-squares predictive model (Yang, 2013, 2014) 

are Fourier-related extended predictive models. Compared with 

the latter model (Yang, 2013, 2014), the proposed DCT-based 

model is somewhat concise because mathematical formula- 

tions of the proposed model are somewhat more concise than 

that of the latter model. While physics meaning of the latter 

model (i.e., the Fourier-series coefficients and harmonics) 

(Yang, 2013, 2014) is more clear and definite than that of the 

proposed DCT-based least-squares predictive model (the trans- 

form (DCT) coefficients, which may also be referred to as the 

DC Coefficient (k = 1) and the AC Coefficients (k = 2, …, N) 

(Sayood and Borkenhagen, 1991). In terms of percentages 

(%) of RMSE-to-mean for the same forecasting tasks, Table 

S2 and S3 list performance comparisons of the proposed 

DCT-based least-squares predictive model with the Fourier- 

series-based least-squares predictive model (Yang, 2013, 2014) 

(with using 6-terms harmonics), respectively. Then in terms of 

the average RMSE-to-mean (Table S3), result of the ANOVA 

statistical test for performances between the proposed DCT- 

based least-squares predictive model and the Fourier-series-based 

least-squares predicttive model for the same prediction tasks is 

listed in Table S4. 

From Tables 1 and S2 to S4, the reported small p-values 

(significant level) 6.861 × 10-4 < 0.1 further confirms that the 

proposed DCT-based least-squares predictive model perform 

better than the Fourier-series-based least-squares predictive 

model for the same tasks of forecasting the AQI fluctuations. 

The ARIMA model is also one widely-used model for 

time-series forecasting. In terms of percentages (%) of RMSE- 

to-mean for the same forecasting tasks, Tables S5 to S7 list 

performance comparisons of the proposed DCT-based least- 

squares predictive model with the ARIMA model, respect- 

tively. 

From the comparison results in Tables S5 to S6 as well as 

the high p-values (significant level) of 0.631 > 0.1 in Table 

S6, it follows that the proposed DCT-based least-squares pre- 

dictive model perform slightly better than or comparable to 

the ARIMA model for the same prediction tasks. 

 

4.2. Correlation Coefficient-based Analysis 

Moreover, another measure index called the correlation 

coefficient (Pearson correlation coefficient) is employed to 

evaluate the prediction results by using the different models. 

The correlation coefficients of the different models for the 

same forecasting tasks are listed in Tables S1 and S8 to S10, 

respectively. 

From the correlation coefficients of the different models 

listed in Tables S1 and S8 to S10, it is also shown that for the 
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same tasks of forecasting the AQI fluctuations, the proposed 

DCT-based least-squares model performs better than the other 

two models (the BP-ANN model and the Fourier-series-based 

least-squares model) and performs comparable to the ARIMA 

model. 

 

4.3. Advantage of the Proposed DCT-Based Forecast 

Model 

In summary, the proposed method yields one good result 

of average 93.24% predictive accuracy in the forecast experi- 

ments at five monitoring stations in Xiangtan of China. On the 

basis of evaluation indices of the “RMSE-to-mean” and the 

correlation coefficients (Tables 1 to 4 and S1 to S10), it is 

demonstrated that for the same tasks of forecasting the AQI 

fluctuations, the proposed DCT-based least-squares model 

performs better than the other two models (the BP-ANN mod- 

el and the Fourier-series-based least-squares model), and per- 

forms slightly better than or comparable to the ARIMA model. 

From time-series analysis or data-driven modeling per- 

spective, hourly AQI fluctuation implicating all its influential 

factors is also one time-series. It means that all the factors in- 

fluencing the AQI fluctuation are implicitly enclosed in its 

time-sequence. Then only the time-series data of hourly AQI 

is used in the proposed DCT-based forecast model while other 

parameters are not directly involved. From the above analysis 

and discussions, we may see that concise and well-formed may 

be one major advantage of the proposed DC-based least- 

squares predictive model for hourly AQI prediction. 

Nevertheless, it seems to be obvious that there currently 

does not exist one method or model can meet all requirements 

for all specific problem instances. Limitations of the proposed 

DCT-based forecast model are listed below. 

 

4.4. Limitation of the Proposed DCT-Based Forecast 

Model 

The meteorological factors can largely influence particle 

pollution in the air. In this study, the DCT-based least-squares 

predictive model is proposed for hourly AQI forecasting from 

the perspective of time-series or data-driven modeling. The 

perspective indicates that fluctuation of daily 24-hour air qual- 

ity that may be influenced by various factors is also one time- 

series. Thus fluctuations in its time-series implicitly reflect 

various factors affecting the air quality. Then only the time- 

series data of hourly AQI is used in the proposed DCT-based 

least-squares predictive model (Equation 3). Usually, the time 

interval Δt for hourly AQI observation is one hour (Δt = 1 

hour). However, the weather may change quickly in some 

areas or in some times such as in winters. In these cases, the 

sudden or quick changes of the meteorological factors cannot 

be quickly recorded or reflected in previous observations of 

hourly AQI time-series, so that data-driven or time-series- 

based predictive models are usually incapable to respond to 

the sudden or quick changes. One possible solution may be to 

take more samples with smaller sampling interval of time Δt 

for the AQI observations. 

Another consideration of the proposed method is that the 

selection of the least-squares-optimum DCT coefficients in fore- 

cast modeling may be somewhat different for other specific 

case. And the settings (M = 11, 12; N0 = N – 1 = 23) in the 

experiments may benefit other applications. In general, the pre- 

diction accuracy will be better or higher when more previous 

hourly AQI observations are available or given to compute the 

least-squares-optimum DCT coefficients in forecast modeling. 

For instance, in the cases to take much more samples with 

smaller sampling interval of time Δt for the AQI observations. 

Such as, when setting Δt = 0.5 hour, we put N = 48 for de- 

scribing the half-hourly AQI. Accordingly, in the similar way, 

we may use about 24-term (M = 23 ~ 24) least-squares- 

optimum DCT coefficients to model and predict (Equations 3 

and 9) the half-hourly AQI. Nevertheless, its further investiga- 

tion should be emphasized in our future study. 

5. Conclusions  

Human daily activities and meteorological factors may 

largely influence particle pollution in the air. From the view- 

point of time-series analysis or data-driven modeling, hourly 

AQI fluctuation, which may be influenced by various factors, 

is also one time-series. Thus all the factors influencing hourly 

AQI fluctuation are implicitly enclosed in its time-series. 

Fourier-based analysis technology is a powerful tool for time- 

series analysis while DCT is also a Fourier-related transform. 

However, the conventional Fourier-based technology cannot 

be directly used for forecasting. In this study, a DCT-based 

predictive model extended in the least-squares sense is pro- 

posed for hourly AQI fluctuation forecasting. Contributions of 

this study are: 

The DCT-based least-squares predictive model (Equation 

3) is proposed for hourly AQI fluctuation forecasting from the 

perspective of time-series analysis or data-driven modeling. 

The proposed predictive model (Equation 3) is implemented 

in conjunction with the least-squares method to compute its 

least-squares-optimum DCT coefficients (Equations 6 to 9) on 

the basis of finite hourly AQI observations. Then the called 

least-squares-optimum DCT coefficients (Equations 6 to 9) are 

used to model and predict (Equation 3) future fluctuation of 

the AQI. 

Experiments and result analysis indicate potentiality of 

the proposed method. The experiments show that the pro- 

posed method yields one satisfying result of average 93.24% 

predictive accuracy in the forecast experiments at five moni- 

toring stations in Xiangtan of China. Performance compare- 

sons of the proposed DCT-based least-squares predictive mod- 

el with the classical BP-ANN model, the Fourier-series-based 

least-squares predictive model (Yang, 2013, 2014) and the 

ARIMA model indicate that for the same tasks of forecasting 

the hourly AQI fluctuations, the proposed DCT-based predict- 

tive model outperforms the other two competitive models (the 

BP-ANN model and the Fourier-series-based least-squares 

predictive model) and performs slightly better than or com- 

parable to the ARIMA model. 

It is indicated that the hourly AQI fluctuations can be 
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well predicted by the proposed DCT-based least-squares pre- 

dictive model (Equation 3) with using about 12-term least- 

squares-optimum DCT coefficients. For the daily 24-hour 

AQI fluctuation prediction, we often put N = 24. Normally, 

different N0-length (N0 < N = 24) data used in forecast mod- 

eling yield different forecasting results. In general, the pre- 

diction accuracy will be better or higher when more previous 

hourly AQI observations are available or given to compute the 

least-squares-optimum DCT coefficients used for forecast mod- 

eling. Thus, the parameter settings may be somewhat different 

for other specific case. And our settings (M = 11, 12; N0 = 23) 

in the experiments may benefit other applications. Usually, 

the time interval Δt for hourly AQI observation is one hour (Δt 

= 1 hour). However, the weather may change quickly in some 

areas or in some times. In these cases, the sudden or quick 

changes of the meteorological factors cannot be quickly re- 

corded or reflected in previous observations of hourly AQI 

time-series, so that data-driven or time-series-based predictive 

models are usually incapable to respond to the sudden or 

quick changes. In the cases, one possible solution may be to 

take more samples with smaller sampling interval of time Δt 

for the AQI observations. For instance, when setting Δt = 0.5 

hour, we put N = 48 for describing the half-hourly AQI. 

Accordingly, in the similar way, we may use about 24-term 

(M = 23 and 24, N0 = N − 1) least-squares-optimum DCT 

coefficients to model and predict (Equations 3 and 9) the half- 

hourly AQI. 

Hourly AQI fluctuation implicating all its influential fac- 

tors is also one time-series. Since all the factors influencing 

the AQI fluctuation are implicitly enclosed in its time-se- 

quence, only the time-series data of hourly AQI is used in the 

proposed DCT-based least-squares predictive model while other 

parameters are not directly involved. Thus concise and well- 

formed may be one major advantage of the proposed DCT- 

based least-squares predictive model for hourly AQI fore- 

casting. However, we cannot expect that currently there exists 

one algorithm or model can outperform all others on all in- 

stances. Hybrid modeling by combing one technique with other 

ones will be one promising direction (Yu et al., 2014). Thus, 

further investigation and improvement of the proposed DCT- 

based least-squares predictive model should be subject to our 

future study. 
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