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ABSTRACT. The Maotiao River is playing an indispensable role in protecting water quality of the Yangtze River of China. Its hydro- 
power development also provides adequate power and clean resources for the local areas. To understand the water quality of the upper 
reaches (i.e., Maijia River), seven indices such as dissolved oxygen (DO), chemical oxygen demand (CODCr), biochemical oxygen 
demanded (BOD5), ammonia nitrogen (NH3-N), total nitrogen (TN), total phosphorus (TP) and fluoride of samples collected from 4 sites 
from 2003 to 2015 were studied using multiple analysis approaches. For winter-spring and summer-autumn seasons, pictures of spatio-
temporal characteristics were presented and the reasons behind their variation trend were elaborated. The Canadian Council of Ministers 
of the Environment Water Quality Index (CCME WQI) was evaluated to concisely mark the water quality. Principal component analysis 
(PCA) was applied to identify the source of pollutants. The results showed that the water quality status in Maijia River was poor from 

2008 to 2011 and acceptable from 2003 to 2007, and 2012 to 2015, respectively. The CODCr, NH4-N and TN were considered to be the 
primary pollutants during winter-spring and summer-autumn seasons. The quality of Maijia River was influenced strongly by human 
activities. Environmental treatment and pollution sources of the middle and lower reaches of the river need to be focused. This study 
paves a way to improve the ecological environment of Maotiao River and overall water quality management of the middle and upper 
reaches of Yangtze River. 
 
Keywords: Upper reaches of Maotiao River, CCME WQI, rrincipal component analysis, spatio-temporal characteristics, source 
apportionment of water pollutants 

 
 

 

1. Introduction 

Water shortages and deterioration of water quality become 
more serious because of industrial development and urbaniza- 
tion (Zheng et al., 2011). Particularly, increasing industrializa- 
tion leads to ever increasing pollution of rivers in developing 
countries (Jonnalagadda and Mhere, 2001). Water resources 
have become a constraint on China’s sustainable development 
(Jiang, 2015). Moreover, surface water quality affects human 
health. 

The Maotiao River located in the center of Guizhou Pro- 
vince, Southwest of China is a branch of the Wujiang distribu- 
tary of the Yangtze River. Being an important part of upper 
reaches of the Yangtze River, the Maotiao River plays an indis- 
pensable role in protecting water quality of the Yangtze River. 
However, the Yangtze River basin is facing severe issues such 
as degradation of water quality (Wu et al., 2013). Due to its pe- 
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culiar geological environment and shallow depth of ground- 
water of karst regions, ground water is vulnerable to pollution 
from human activities, and once contaminated its remediation 
is a difficult and time consuming project (Lang et al., 2006). In 
the light of high interchange between surface and ground water 
hydrologic systems, identification of the cause of pollution in 
order to alleviate the increasingly serious problem of water 

quality deterioration in karstic areas is highly significant. How- 
ever, data that characterize the sources and spatial and temporal 
distribution in this area are still very limited. To our knowledge, 
no study has ever systematically addressed the pollution charac- 
teristics and trends in the upper reaches of Maotiao River. 

Recently, water quality assessment has become a critical 

issue (Tsakiris et al., 2015) because it can effectively distin- 
guish the factors of potential threats to human health and help 

governments formulate relevant policies (Wang et al., 2017). 
The surface-groundwater system is a typical hydrogeological 
system in Guizhou Province with the utilization of karst water 
resources accounts for 80% of the total water resources, which 
is extremely sensitive to human activities (Li et al., 2018). It is 
essential to find adaptive methods to assess spatial-temporal 
patterns and trends in water quality of the area. To the best of 
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our knowledge, in China, there are some typical methods for 
evaluating water quality i.e., single factor assessment method 
(Yan et al., 2016a), pollution index method (Li et al., 2015), 
fuzzy method (Jia and Zhang, 2011), grey system method (Ip 
et al., 2009), analytic hierarchy process method (Zhang et al., 
2015) and artificial neural network method (Bo et al., 2018). 
However, these methods have their disadvantages. For instan- 
ce, a typical problem of fuzzy method is that the difficulty of 
determining the weights of experts’ evaluations, which induces 
inaccurate judgment of quality of the water (Baranyi et al., 2005; 
Zhou et al., 2016). Artificial neural network method requires 
greater computational resources and leads to overfitting a train- 
ing data set with poor performance in external test data sets (Tu, 
1996), which is not suited to the explicit computational object in 

the present study. Although, other methods mentioned above 
could depict the status of water quality in section, they are un- 
able to explain the relationship between sections and character- 
ize spatio-temporal characteristics of water pollutants (Mei et 
al., 2014). In contrast, the Canadian Council of Ministers of the 
Environment Water Quality Index (CCME WQI) is an impor- 
tant technique in water quality assessment (Yan et al., 2016b), 
which has been used in many countries and received great as- 
sessments because of its several merits (Tunc Dede et al., 2013; 
Venkatramanan et al., 2016; Li et al., 2017a; Bilgin, 2018). Com- 
pared with different forms of water quality indices, CCME WQI 
has several advantages includeing flexibility in selection of 
input parameters and tolerance to missing data (Terrado et al., 
2010). Moreover, the CCME WQI provides a convenient means 

of summarizing complex water quality data that can be easily 
understood by people from various fields such as the public, 
water distributors, planners, managers and policy makers (Lumb 
et al., 2006). In terms of main weaknesses, the WQI is affected 
by the insensitivity towards a particular parameter in the process 
of aggregation (Lumb et al., 2011). Above all, the index method 
provides significant information about a particular water-body 
and describes trends in the results in an accessible, clear and 
simple manner, which avoids considering assignment of relative 
weights to each parameter by subjective judgments (Salcedo-
Sánchez et al., 2016). The CCME WQI as an effecttive tool has 
been used to characterize the quality of drinking source (Hurley 
et al., 2012) and its application is widespread in the environ- 
mental management of rivers, lakes and reservoirs (Akkoyunlu 
and Akiner, 2012; Gao et al., 2016). It has also been applied to 
compare the water quality parameters between the shrimp farm 
water supply lagoon and coastal environments (Ferreira et al., 
2011). In order to directly evaluate strategies by control agen- 
cies to improve water quality and use by authorities, decision-
makers and evaluators of water quality, CCME WQI was ap- 
plied in the case study. 

Defining the rules of spatio-temporal change of water qual- 
ity has been a major focus of water hydrology (Chang, 2008), 
which would allow water management authorities to take ade- 
quate measures (Abaurrea et al., 2011). Multivariate statistical 
techniques such as correlation analysis, cluster analysis (CA), 
principal component analysis (PCA) and factor analysis (FA), 
are usually used for the evaluation of both spatio-temporal 

variations and the interpretation of large and complex water 
quality datasets. These can serve as powerful tools for surface/ 
ground water resources on a local or even on a regional scale 
(Singh et al., 2013). Although multivariate analysis has been used 
to assess surface water quality in a number of studies from dif- 
ferent regions of China (Wang et al., 2006; Li et al., 2007, 2017b; 
Vadde et al., 2018; Yang et al., 2018; Zhang et al., 2018). How- 
ever, no such assessment has so far been made in the karst hy- 
drological system. The strong interchange between surface wa- 
ter and groundwater is frequent in the karstic area, and the de- 
velopment or contamination of one commonly affects the oth- 
er (Tao et al., 2011). Amidst this general scenario, the spatio- 
temporal variation of water quality and source apportionment 
of pollutants affect the quality of groundwater in the region that 
if understood clearly, can lead to appropriate strategies and 
determine priorities for river pollution control and effecttive 
water resources management of the karstic area. 

Previous study reported that nutrient concentrations and 
fluxes through river network vary strongly over time and nu- 
trient residence times can be on the order of decades in am- 
bient medium, which lead to quantify the effectiveness of ch- 
anges in land management and requires both long-term and 
high-frequency monitoring (Abbott et al., 2018). Most studies 
only used a limited number of monitoring periods which of- 
fered a limited value for understanding the dynamics of chang- 
ing water quality, and did not explicitly consider the issues of 
scale over time. For example, limited length of data (5 years) 
precludes the assessment of the actual effects on groundwater 
recharge in Trier-Petrisberg, southwestern Germany (Kessler et 
al., 2012). Konrad and Booth (2002) demonstrateed that 10 years’ 
datasets were not adequate to represent long-term changes in 
hydrologic analysis and were likely to involve other factors 
such as climate variability and vegetation water uptake. Thus, 
the study of water quality assessment model necessitates long- 
time monitoring of stream flow in a catchment to discard any 
climate effects (Hamel et al., 2013). It is imperative to select 
more appropriate time periods (> 10 years) and more repre- 
sentative sites in the upper reaches of the Maotiao River to 
analyze the spatio-temporal distribution characteristics of the 
water quality parameters. 

In this study, a large data matrix of 13 years (2003 ~ 2015) 
was obtained from four monitoring sites during winter-spring 
and summer-autumn seasons. The aims of the study were to: 
(1) assess the four sites (S1, S2, S3 and S4, detailed in the fol- 
lowing section) with seven water quality parameters of upper 
reaches of the Maotiao River; (2) determine the classification 
of water quality; and (3) identify water quality variables res- 
ponsible for spatio-temporal variations in river water quality. 
In addition, the study combined the usefulness of multivariate 
statistical techniques (CA, DA and PCA) with CCME WQI in 
improving our understanding of pollution characteristics of 
surface water in the karst region. The results will offer great 
significance for improving the ecological environment of the 
Maotiao River and can be beneficial to the understanding and 
management of groundwater in the region.  
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Figure 1. Sampling sites of the Maijia River with the location in Baiyun District of Guiyang City. 
 

2. Materials and Methods 

2.1. Study Area 

The Maijia River is located in Guiyang, Guizhou Province 
of China. It is the upper reaches of the Maotiao River and the 
biggest river in Baiyun District of Guiyang, originating in the 
west of Zhouwu Mountain of Xiuwen County, flowing through 
the middle and southwest low-laying mountainous basin and 
valleys, leading to the Maotiao River. The region has an annual 
average temperature of 12.5 to 14.5 ºC and receives an average 

annual precipitation of 1,147 to 1,191 mm. The Maijia River is 
26.15 km long, with a total catchment area of 150.2 km2 having 
annual mean runoff of 2.70 m3/s. With the objective of exploring 
water pollution problems in the Maijia river of Guiyang, sam- 
pling campaigns were conducted during the winterspring and 
summer-autumn seasons from 2003 to 2015. Four sites along 
the Maijia River were selected as study sites (Figure 1), which 
were determined by the Environmental Protection Bureau of 
Guizhou Province according to the procedure of combining ri- 
ver mixing length, human activities, and geographic informa- 
tion systems. Sites in the Maijia River included S1 (106°40'48" 
E, 26°43'48" N), S2 (106°40'12" E, 26°44'24" N), S3 (106°37'48" 
E, 26°43'12" N), and S4 (106°35'59" E, 26°42' 36" N). 

 

2.2. Sample Analysis 

According to China’s national environmental quality stan- 
dard for surface water (GB 3838-2002), the selected detection 
indices, including dissolved oxygen (DO), chemical oxygen de- 
mand (CODCr), biochemical oxygen demanded (BOD5), ammonia 
nitrogen (NH3-N), total nitrogen (TN), total phosphorus (TP), and 
fluoride, were analyzed semi-annually, according to water and 

wastewater monitoring analysis method (SEPA, 2002) in the lab- 
oratory except DO, which was determined in situ. The instrument 
detection limits of DO, CODCr, BOD5, NH3-N, TN, TP and fluor- 
ide are 0.2, 5, 0.5, 0.025, 0.05, 0.01, and 0.001 mg/L, respectively 
with recovery rate between 80 to 120%, relative standard devia- 
tion (RSD) of < 5%. 

 

2.3. The CCME WQI Model 

CCME WQI is established based on the British Columbia 
Ministry of Environment, Lands and Parks (Zandbergen and 
Hall, 1998), comprising 3 factors in calculation: scope (f1), fre- 
quency (f2) and amplitude (f3) (CCME, 2002; Terrado et al., 2010; 
Mostafaei, 2014). The formula is described in Equation (1):  
 

2 2 2
1 2 3100

1.732WQI

f f f
CCME

    
 
 

 (1) 

 
where f1, f2, f3 represent the percentage of variables that do not 
meet their objectives at least once (failed variables), the per- 
centage of individual tests that do not meet their objectives 
(failed tests), and the amount by which failed tests do not meet 
their objectives, respectively, the divisor 1.732 normalizes the 
result to a range 0 ~ 100 (CCME, 2002; Terrado et al., 2010; 
Mostafaei, 2014) 

CCME WQI describes the water quality index from worst 
to best water quality (Tunc Dede et al., 2013), which is illus- 
trated in Table 1 (CCME, 2002). 

 

(i) Calculation method of f1 and f2: 
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1 100
number of  failed  variables

f
total  number of  variables

 
  
 

 (2) 

 

2 100
number of  failed  tests

f
total  number of  tests

 
  
 

 (3) 

 
(ii) Calculation method of f3. 

When the test value is the larger the better, such as DO, the 
calculation method is following: 

 
excursioni = objectivei  / failed test valuei  – 1 (4) 
 

When the test value is the smaller the better, such as CODCr, 
the calculation method is following: 
 
excursioni = failed test valuei  / objectivei – 1 (5) 
 

The sub-factor “nse” is defined by the CCME, referred to 
as the normalized sum of excursions (Terrado et al., 2010; 
Mostafaei, 2014):  
 

1

n

i

nse 


 excursioni  / total number of tests (6) 

 
The f3 is then calculated by the formula: 
 

 3  / 0.01    0.01 f nse nse    (7) 
 

2.4. Statistical Analysis  

2.4.1. Cluster Analysis 

Cluster analysis (CA) helps in grouping objects into class- 
es according to similarities with a class and dissimilarities be- 
tween different classes, with the results helping in interpreting 
the data (Vega et al., 1998). The dendrogram resulted from CA 
provides a visual summary of the clustering processes, which 
presents a drawing of the groups and their proximity with the 
low-dimensional data. Euclidean distance is most commonly 
used in CA due to its simplicity (Shrestha et al., 2008). In this pa- 
per, hierarchical agglomerative CA was performed on the nor- 
malized data set by between-groups linkage, using Euclidean 
distances as a measure of similarity. In hierarchical clustering, 
each object (here each year’s pollution concentration of indi- 
ces) initially constituted its own cluster. Between-groups link- 
age was calculated by the with cluster sum of squares (WCSS) 

for every cluster, as in Equation (8). The two nearest cluster were 

then combined and this process was continued until all objects 
belonged to one cluster (Mallye et al., 2014):  
 

2

1

( )
m

j
j

WCSS x x


   (8) 

 
where WCSS is the squared Euclidean distance between an ob- 
ject in the cluster (xi) and the mean of that cluster (x), m is all 
objects in that cluster. 

2.4.2. Discriminant analysis 

Discriminant analysis (DA) is used to discriminate the re- 
sults of CA whether effective and classify the significance of 
pollutant indices (Singh et al., 2004): 

 

1
( )

n

i i ijj ij
f G k w p


   (9) 

 
where i is the number of groups (G), n is the number of indi- 
ces used to classify a set of data into a given group, wij is the 
weight coefficient, pij is the pollution concentration of indices, 
and ki is the constant inherent to each group. 

In this study, two groups for temporal evaluations have been 
selected during winter-spring and summer-autumn seasons. DA 
was performed on each raw data matrix using standard, enter in- 
dependents together mode in constructing discriminant functions 
to evaluate temporal variations in river water quality. The tem- 
poral were the grouping variables, whereas all the measured indices 
constituted the independent variables. 

 

2.4.3. Principal Component Analysis 

It is difficult to assess the river water quality with a lot of 
factors. Hence, reducing the number of monitoring factors in- 
stead of original large amounts of data simplifies the analysis. 
Principal component analysis (PCA) is a multivariate statisti- 
cal method that can be used for reducing complexity of input 
variables instead of a large volume of information and it is in- 
tended to have a better interpretation of variables (Pires et al., 
2008). In this study, PCA was performed using SPSS 23.0 for 
Windows, which was performed to extract significant principal 
components and to further reduce the contribution of variables 
with minor significance. These principal components were sub- 
jected to varimax rotation generating varifactors (Singh et al., 
2004). Furthermore, feature vectors and standardized variables per- 
formed by PCA produced the absolute principal component 
scores. Then to analyze and calculate the average pollution con- 
tribution by multiple linear regression, using pollutant concentra- 
tion as dependent variable, which should determine the influ- 
ence degree of each water evaluation index by principal compo- 
nent (Zhou et al., 2007). 

3. Results and Discussions 

3.1. Characteristics of Water Pollutants in Upper Reaches 
of Maotiao River 

As shown in Table 2, seven monitoring indices were ana- 
lyzed during winter-spring and summer-autumn seasons from 
2003 to 2015. The maximal value of CODCr was 87 mg/L, which 
was 2.9 times higher than the Standard IV grade of China’s na- 
tional environmental quality standard for surface water (GB 
3838-2002), meaning that the river was subjected to organic 
pollutants. Nitrogen pollution was most serious in the Maijia 
River with 3.655 ~ 4.468 mg/L, below standard V grade (i.e., 
2.0 mg/L) of surface water. Furthermore, 77.9% samples of TN 
and 32.7% samples of NH3-N were inferior to water quality 
standard V grade of surface water. The maximal values of TN  
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Table 1. Category of CCME WQI 

Category CCME WQI value Characteristic 

Poor 0 ~ 44.9 
The water quality condition has been threatened and destroyed continuously, usually departing from 
natural or desirable levels. 

Marginal 45.0 ~ 64.9 
The water quality condition has been threatened and destroyed frequently, often departing from 
natural or desirable levels. 

Fair 65.0 ~ 79.9 
The water quality condition has been threatened and destroyed occasionally, sometimes departing 
from natural or desirable levels. 

Good 80.0 ~ 94.9 
The water quality condition is protected with only a minor degree of threat and destruction, rarely 
departing from natural or desirable levels. 

Excellent 95.0 ~ 100 
The water quality condition is protected with a virtual absence of threat or destruction, very close to 
natural or desirable levels. 

 
Table 2. Statistical Water Quality Data Monitored during Winter-Spring and Summer-Autumn Seasons at Cross-Sections in 
Maijia River, Upper Reaches of Maotiao River (2003 ~ 2015) 

Evaluation index Total number 
Winter-spring season Summer-autumn season 

Standard level IV 
Min Max mean SD CV(%) Min Max mean SD CV(%) 

DO (mg/L) 104 2.4 8.7 6.2 1.5 23.9 3.3 8.3 6.2 1.3 21.1 3 
CODCr (mg/L) 104 5 87 24.2 15.0 62.0 5 35 17.3 8.1 46.8 30 
BOD5 (mg/L) 104 1.0 14.0 4.6 3.2 68.9 1.0 9.5 3.5 2.1 61.1 6 
NH3-N (mg/L) 104 0.087 10.000 2.475 2.372 95.8 0.062 4.220 1.169 1.256 107.4 1.5 
TP (mg/L) 104 0.07 1.90 0.23 0.33 143.1 0.01 8.00 0.37 1.28 347.3 0.3 
TN (mg/L) 104 0.83 11.00 4.47 2.47 55.3 1.06 14.00 3.66 2.33 63.8 1.5 
Fluoride (mg/L) 104 0.157 5.220 1.379 1.212 87.9 0.075 9.300 1.629 1.795 110.2 1.5 

 
and NH3-N were 9.3 and 6.7 times higher than the standard IV 
grade (2.0 mg/L) of surface water, respectively. 

Except TP and fluoride, the average values of monitoring 
indices during winter-spring season were higher than summer- 
autumn season. Since the Maijia River is originated from the 
precipitation, pollutants in the river were diluted due to rain- 
fall during summer-autumn season. However, the average va- 
lues of TP and fluoride during summer-autumn season (i.e., 
0.368 and 1.692 mg/L, respectively) were higher than winter- 
spring season. The reason might be the source of the excessive 
use of water for household purposes during summer-autumn 
season and then the discharge of used water directly into wa- 
ter bodies. Additionally, with higher water temperature during 
summer-autumn season (Jensen and Andersen, 1992), phos- 
phorrus released from sediments from Maijia River was also an 
important cause of pollution. As shown in Table 2, NH3-N, TP, 
TN and fluoride did not reach the standard IV grade of surface 
water. 

 

3.2. Comprehensive Evaluation of Water Quality of CCME 
WQI 

Water quality of CCME WQI was evaluated (Table 3), 
which showed that the range of CCME WQI was from 35.8 to 
86.0, categorized as poor, marginal, fair, and good. During the 
winter-spring season, with the exception of S1, each of CCME 
WQI was poor, while water quality of all sites (S1, S2, S3, and 
S4) had undergone a drastic change from fair to poor in sum- 
mer-autumn season. In fact, during the winter-spring season the 
CCME WQI was lower than the summer-autumn, which meant 
that the water quality was different between winter-spring and 
summer-autumn seasons, showing that water quality was worse 

in winter-spring season.  
 

 
 

Figure 2. Annul water quality index (CCME WQI) of the 
Maijia River. 

 

For the spatial variation, it showed the water quality was 
different from 2003 to 2015 (Figure 2). The X-axis shows the 
years, while the Y-axis is divided into the four different index 
categories, ranging from poor to marginal. Even though from 
2003 to 2004 water quality mainly ranged from fair to margin- 
al, it returned again marginal from 2005 to 2007, while it was 
poor from 2008 to 2011. It was remarkable that the highest and 

lowest CCME WQI values occurred in 2004 and 2008, respect- 
tively. The poor category was the one assigned to most years dur- 
ing 2003 ~ 2011. Marginal water quality was appeared in 2012, 
which became fair from 2013 to 2015, especially in 2014. Since  
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Table 3. CCME WQI and Classification of Pollution Sites 

Site Coordinate Time f1 f2 f3 CCME WQI Category 

S1 
106°40'48" E, 
26°43'48" N 

Winter-spring 71.4 17.6 14.3 56.7 Marginal 
Summer-autumn 42.9 16.5 21.5 72.4 Fair 
Annual 71.4 34.1 24.3 86.0 Good 

S2 
106°40'12" E, 
26°44'24" N 

Winter-spring 85.7 42.9 44.3 39.0 Poor 
Summer-autumn 71.4 27.5 21.5 54.1 Marginal 
Annual 85.7 70.3 54.3 68.7 Fair 

S3 
106°37'48" E,  
26°43'12" N 

Winter-spring 100 33.0 21.8 37.9 Poor 
Summer-autumn 57.1 24.2 17.2 62.8 Marginal 
Annual 100 57.1 32.7 81.1 Good 

S4 
106°35'59" E, 
26°42'36" N 

Winter-spring 85.7 52.7 47.4 35.8 Poor 
Summer-autumn 85.7 38.5 33.8 42.4 Poor 
Annual 85.7 91.3 58.6 66.2 Fair 

 
burgeoning urbanization was proposed in the documents of the 

16th National Congress of the Communist Party of China in 

2003, the tertiary industry had achieved great development (Dai, 
2003), which increased the emissions of pollutants to surface wa- 
ter. During 2003 ~ 2014, the urbanization rate of Guiyang had in- 
creased by nearly 15 to 72.1% (Figure 3). Likewise the amount 
of waste generation increased from 5 million tons to 20 mil- 
lion tons over time (Fang et al., 2017), which probably in- 
creased emissions of pollutants to surface water. 
 

 
 

Figure 3. Population change in Guiyang from 2001 to 2015. 
Data in this figure were collected from Guiyang Municipal 
Bureau of Statistics (Guiyang Statistical Yearbook 
Committee, 2016). 
 

In general, the water quality of the Maijia River was influ- 
enced by human activities from 2003 to 2015, such as urbani- 
zation, Gross National Product (GNP)/capita and the use of 
chemical fertilizers (Figure 4). WQI decreased from 2004 to 
2008, which were successfully simulated with line equation by 
the three factors, respectively. It indicated that the three fac- tors 
increased during 2004 ~ 2008, which caused water quality to 
deteriorate severely. Fortunately, Guiyang was selected as a na- 
tional Low-Carbon Pilot City in 2011 and an Ecological Civi- 
lization Pilot City in 2014. Moreover, several projects towards wa- 

ter governance and green belt rebuilt were launched in Guiyang 
after 2008, such as the “river chief mechanism”, which were mean- 
ingful for the protection and management of water resources. 
These measures gradually improved the water quality in the river 
after 2009. However, factors influencing water quality still ex- 
isted and were more complex, which were not explained very 
well by the regression equation after the year. 

 
3.3. Characteristics of Spatio-Temporal Distribution of 
Pollutants 

3.3.1. Similarity and Difference of Temporal Characteristics 
of the Pollutants  

Temporal cluster analysis and discriminate analysis of pol- 
lutants showed that during winter-spring and summer-autumn sea- 
sons the characteristics of pollutants were divided into two pe- 
riods i.e., period I, with low concentration of pollutants, and pe- 
riod II, with high concentration of pollutants (Figures 5 and 6). 
The results of cross validation showed that the accuracy of tem- 
poral cluster analysis reached to 92.3% during winter-spring 
and 84.6% in summer-autumn season (Table 4). However, there 
were differences during the winter-spring and summer-autumn sea- 
sons. The degree of pollution of the water in winter-spring sea- 
son of 2008 was higher (Figure 5(a)), while the degree of pollu- 
tion of the water in summer-autumn season of 2008, 2011, 2013, 
2014 and 2015 was higher (Figure 5(b)). Temporal discriminate 

analysis of indices i.e., DO, CODCr, BOD5, NH3-N, TP, TN and 
Fluoride, reflected the difference laws in the temporal diversity 
of the water quality of the Maijia River (Table 5). As shown in 
the temporal variation of pollutants in the Maijia River (Fig- 
ure 6(a)), the concentration of CODCr declined dramatically 
from 58 mg/L in 2008 (period I) to 18 mg/L in 2015 (period II) 
during the winter-spring season. On the other hand, the con- 
centration of CODCr and TN increased from 25 to 27 mg/L and 
3.198 to 7.975 mg/L during 2008 (period I) to 2015 (period II) 

in the summer-autumn season (Figure 6(b)). In general, the de- 
gree of water pollution was mostly severe in 2008 and slightly 
improved from 2012 to 2015. 

In addition, since the planning of ecological restoration, 
functional optimization and intensively land use through con-
ceptual top-level design was proposed by local government  
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(1) Regression equation between WQI (Y1) and urbanization rate (X1) (from 2004 to 2008): 
Y1 = – 2513 ꞏ X1 + 1637.2, R = 0.9871 
(2) Regression equation between WQI (Y2) and GNP/capita (X2) (from 2004 to 2008): 
Y2 = – 0.0043 ꞏ X2 + 126.29, R = 0.8968 
(3) Regression equation between WQI (Y3) and chemical fertilizer (X3) (from 2004 to 2008): 
Y1 = – 0.0109 ꞏ X3 + 753.72, R = 0.6867 

 

Figure 4. The relationships among WQI and urbanization rate, GNP/capita and chemical fertilizer and regression equations. Data 
in this figure were collected from Guiyang Municipal Bureau of Statistics (Guiyang Statistical Yearbook Committee, 2016). 

 

 
 

Figure 5. Temporal cluster analysis of pollutants during (a) winter-spring and (b) summer-autumn seasons in the Maijia River. 
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(Yang and Yang, 2016), lots of measures had been taken to pro- 
tect water quality such as reinforcement of domestic wastewater 
control and improvement of water resource management level. 
Taken altogether, the concentration of pollutants during sum- 
mer-autumn season was lower, because the amount of rainfall was 
heavier, which diluted the concentration of pollutants (Tang 
and Liu, 2008) and improved the water quality to some extent. 

 
Table 4. Temporal Discriminate Analysis of Pollutants in the 
Maijia River 

Time Group 
Number of sample 
Accuracy (%) First group Second group

Winter- 
spring 

First group 100 12 0 
Second group 
Subtotals 

0 
92.3 

1 
13 

0 
0 

Summer-
autumn 

First group 75 6 2 
Second group 
Subtotals 

100 
84.6 

0 
6 

5 
7 

 
Table 5. Classification Functions for Discriminant Analysis of 
Pollutants in the Maijia River 

Index 
Winter-spring season Summer-autumn season 

First group Second group First group Second group 

DO 21.286 31.911 31.225 23.472 
CODCr 3.404 6.282 -4.076 0.370 
BOD5 0.171 -1.752 -9.913 -6.484 
NH3-N -8.336 -15.533 -7.094 4.666 
TP 2.933 18.653 612.321 394.456 
TN 1.974 1.485 5.199 -0.843 
Fluoride 15.320 18.867 6.328 2.557 
Constant -109.541 -265.158 -96.505 -100.882 

 

3.3.2. Similarities and Differences of Spatial Characteristics 
of the Pollutants 

As shown in Figure 7, the concentration of pollutants at S1 
site was lower than other sites (S2, S3, and S4), because the 
headstream of the Maijia River (S1) was influenced slightly by 
human activities in every season. Along the river, the mass con- 
centration of CODCr, BOD5, TP and TN had roughly trended up 
during winter-spring season, while the mass concentration of 
CODCr, NH3-N, TP and TN had roughly trended up during sum- 
mer-autumn season. The main reason was that human activeties 
become more frequent in the middle and lower reaches of the ri- 
ver, such as discharging wastewater directly into the river as 
well as agricultural pollution. The mass concentration of CODCr 
was 87 mg/L in the site of S2 during the winter-spring season, 
with the highest concentration among the four sites (Figure 
7(a)), because population in the areas close to the site of S2 was 
increased during 2008 ~ 2011. It was likely that new develop- 
ment or agricultural activities intensified as a result of popula- 
tion increase. Figure 7(a) described the upward trends for NH3-
N and TN during 2008 ~ 2011, with similar trends for TN of S2 
showed in Figure 7(b). The downward trends for other water quali- 
ty parameters of S2 during 2011 ~ 2015 can be seen in Figure 7(a), 
while Figure 7(b) exhibited opposite trends. 

Generally, the mass concentration of pollutants at the site 
of S3 was lower than S2 and S4 during winter-spring season or 

summer-autumn season (Figure 7). Since there were not agri- 
cultural activities with unused land and forested areas around 
S3, so the spatial heterogeneity in land use influenced the spa- 
tial variability of pollutants concentrations (Ahearn et al., 2005). 
These results suggested that local land cover and vegetation ex- 
tent were the primary driving forces behind the variations in 
pollutant concentrations (Tang and Liu, 2008). To protect sur- 
face water resources, it has the vital significance to establish a 
national eco-civilization zone in Guizhou Province, having more 
than 50% of the province’s land areas covered with forests by 
2020 (Chuai et al., 2013).  

For the site S4, the lower reaches of the Maijia River, the 
pollutant concentration were highest especially during winter- 
spring season from 2008 to 2011, which declined from 2012 to 
2015 because the effect of point-source pollution control and oth- 
er local water quality management practices influenced in this re- 
gard. However, variations in pollutants concentration had increase- 
ed quite significantly in four years (2012 ~ 2015) during the sum- 
mer-autumn season. A lot of humus and other agricultural pol- 
lutants were mixed with the Maijia River with heavy rainfall 
during the summer-autumn season, leading to widespread or- 
ganic pollution of water (Tang and Liu, 2008; Lin et al., 2011). 
 

3.4. Source Apportionment of Pollution 

The original data were standardized and then applied the 
method of factor analysis to discriminate the main pollution 
factors and source. Referring to absolute loading values of greater 
than 0.75, the factor loadings included reasonably most informa- 
tion of original variables (Liu et al., 2003). Moreover, the rotation 
of the factor axis was executed to yield a ‘sample structure’ in 
order to facilitate interpretation in terms of original variables.  

Firstly, the methods of Kaiser-Meyer-Olkin (KMO) and 
Bartlett’s test of sphericity were used to test correlation matrix 
for the original data during winter-spring and summer-autumn 
season, and then four principal components were extracted. 
The values of KMO were calculated as 0.769 and 0.700, after 
the exploratory factor analysis, and the Chi-square of Bartlett 
spherical test were 140.560, 96.096 having the significance lev- 
el coefficient of p < 0.05, which meant that the method of fac- 
tor analysis was reasonable. 

Table 6 presented the eigenvalues, contribution rates and 
cumulative contribution rates of principal components for the 
factor analysis of original data during the winter-spring and 
summer-autumn seasons. It revealed that the four components 
explained approximately 86.841 and 83.126% of total variance 

during winter-spring and summer-autumn seasons, respective- 
ly. Table 6 also showed the loading of vaimax rotated factor 
matrix for four-component model. Evidently, the first compo- 
nent was generally more correlated with the variables than the 
other components. It was expected because these components 
were extracted successively, each one accounting for as much 
of the remaining variance as possible. 

During the winter-spring season, the meanings represent-  
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Figure 6. Temporal variation of pollutants during (a) winter-spring and (b) summer-autumn seasons in the Maijia River. 
 

 
 

Figure 7. Spatial variation of pollutants during (a) winter-spring and (b) summer-autumn seasons in the Maijia River. 
 
ed by the main factors were explained as follows: PC1, which 
explained 33.9% of the total variance, had strong positive load- 
ing on NH3-N and TN, and moderate loadings on BOD5 and TP. 
During the winter-spring season, there was less rainfall, which 
was a significant factor in the non-point source pollution yield 
(Yang et al., 2011), less non-point source pollution and mass 

point source pollution in dry season. NH3-N was mainly from the 
relatively constant industrial and municipal point source pollu- 
tion loads (Wu and Chen, 2013). So NH3-N, TN, BOD5, and TP 
grew out of domestic, and food processing wastewater. In addi- 
tion, NH3-N included in PC1 was total-quantity control of pol- 
lutant, so the PC1 was considered as a potential factor, which 
grows significantly with economic development. 

PC2, which explained 18.6% of the total variance (Table 
6), had strong positive loading on CODCr, and moderate load- 
ings on BOD5. The indices in connection with biochemical fac- 

tors reflected the basic water quality of river. Discharges of do- 
mestic and industrial wastewater resulted in serious deteriora- 
tion of water quality (Mojahedi and Attari, 2009; Wu and Chen, 
2013). 

PC3, which explained 18.6% of the total variance (Table 6), 
had strong positive loading on DO, and moderate loadings on 
TP. It possibly revealed that domestic wastewater was the main 
pollution source. Besides, there was significant negative correla- 
tion between DO concentration and TP, which meant the phos- 
phate concentration decreased at increasing DO. This phenome- 
non was consistent with the common biophosphorus removal 
processes in sequential anaerobic and aerobic condition, where 
the phenomenon was attributed to the activity of phosphorus-
accumulating organisms (PAOs) (Mahendraker et al., 2005). 

PC4 accounted for 15.8% of the total variance (Table 6), 
had strong positive loading on fluoride. As shown in Figure 1, 
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Table 6. Loading Matrix of Rotated Factors 

Time Monitored item PC1 PC2 PC3 PC4 

Winter-spring season 

DO -0.024 -0.202 -0.918 -0.100 
CODCr 0.260 0.916 0.164 -0.030 
BOD5 0.721 0.513 0.188 -0.048 
NH3-N 0.746 0.367 0.088 0.365 
TP 0.644 -0.009 0.618 -0.029 
TN 0.889 0.149 0.013 0.165 
Fluoride 0.153 

33.901 
-0.040 
18.585 

0.073 
18.575 

0.964 
15.780 Contribution (%) 

Cumulative contribution (%) 33.901 52.486 71.061 86.841 

Summer-autumn season 

DO -0.093 -0.068 0.986 -0.014 
CODCr 0.826 -0.001 -0.190 0.160 
BOD5 0.579 0.560 -0.078 -0.095 
NH3-N 0.851 -0.077 -0.110 0.209 
TP -0.184 0.898 -0.045 0.023 
TN 0.896 -0.080 0.106 -0.020 
Fluoride 0.150 

37.267 
37.267 

-0.008 
16.249 
53.516 

-0.014 
14.861 
68.377 

0.976 
14.749 
83.126 

Contribution (%) 
Cumulative contribution (%) 

 
Table 7. Comprehensive Evaluation for the Water Pollution of the Maijia River 

Time Site PC1 score PC2 score PC3 score PC4 score 
Comprehensive evaluation 
score 

Pollution rank 

Winter-spring 
season 

S4 0.701 0.200 0.367 -0.116 0.325 1 
S2 0.491 0.283 -0.420 0.220 0.175 2 
S3 -0.674 -0.054 0.116 0.451 -0.145 3 
S1 -0.518 -0.429 -0.062 -0.555 -0.355 4 

        

Summer-autumn 
season 

S4 0.818 0.064 -0.093 -0.247 0.265 1 
S2 -0.059 -0.163 -0.004 0.673 0.051 2 
S3 -0.355 0.401 0.110 0.111 -0.034 3 
S1 -0.404 -0.302 -0.013 -0.537 -0.282 4 

 
Guizhou aluminum factory is 4 km from the river, with the pro- 
duct of alumina and aluminum being 1.2 and 0.43 Mt/year, re- 
spectively. It indicated that the factory in the area was likely the 
main pollution source of industrial fluorine. On the other hand, 
fluoride derives mainly from the lithological sources (Hem, 1985). 
Besides, the rocks absorbed fluoride in the soil are also the 
source (Ayoob and Gupta, 2006). Since the special geological 
characteristics of karst in Guizhou Province, fluoride is not sur- 
prised to be found in the Maijia River.  

Like winter-spring season, PC4 accounted for 14.7% of the 
total variance during summer-autumn season. PC1, which ex- 
plained 37.3% of the total variance, had strong positive load- 
ing on CODCr, NH3-N, TN and moderate loadings on BOD5, 
and compared with winter-spring season the contribution of 
CODCr was upward. These are the dominant indices for water 
quality assessment of river which indicate the pollution status 
of organics and nutrients, closely relating with acceptance of 
daily sewerage discharge and non-point pollution. PC2 account- 
ed for 16.2% of the total variance, had strong positive loading 
on TP, and moderate loadings on BOD5. That possibly revealed 
that the non-point pollution was substantial during summer- 
autumn season. PC3 explained 14.9% of the total variance with 

strong positive loading on DO, which revealed that the dis- 
charge of daily sewerage and non-point pollution reduced the 
concentration of DO (Chang, 2008). Generally, the principal 
influent factors were not identical, but the four principal com- 
ponents suggested the impact of human activities on water dur- 
ing the different time. 

According to the coefficient matrix of factor scores and the 
monitoring data of all indices, calculating equations were estab- 
lished as follow: 

During the winter-spring season: 
 
F1 = 0.278x1 – 0.279x2 + 0.262x3 + 0.257x4 + 0.376x5  

+ 0.538x6 – 0.145x7  (10) 
 
F2 = –0.278x1 + 0.939x2 + 0.221x3 + 0.116x4 + 0.445x5  

– 0.233x6 + 0.014x7  (11) 
 
F3 = –0.814x1 – 0.061x2 – 0.049x3 – 0.137x4 + 0.463x5  

– 0.186x6 + 0.008x7  (12) 
 
F4 = –0.091x1 + 0.035x2 – 0.174x3 + 0.224x4 – 0.233x5  

– 0.052x6 + 0.937x7  (13) 
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During the summer-autumn season: 
 
F1 = 0.065x1 + 0.300x2 + 0.245x3 + 0.312x4 – 0.087x5  

+ 0.387x6 – 0.081x7  (14) 
 
F2 = 0.071x1 – 0.019x2 + 0.486x3 – 0.074x4 + 0.804x5  

– 0.061x6 + 0.047x7  (15) 
 
F3 = 0.979x1 – 0.100x2 + 0.052x3 – 0.024x4 + 0.057x5  

+ 0.189x6 + 0.043x7  (16) 
 
F4 = 0.039x1 + 0.036x2 – 0.153x3 + 0.082x4 + 0.101x5  

– 0.151x6 + 0.981x7  (17) 
 
The normalized monitoring data during winter-spring and 

winter-spring seasons were put into Equations (10) ~ (13), (14) ~ 
(17), respectively in order to obtain the score of four components. 
The comprehensive evaluation score of the sites explained the de- 
gree of water pollution, which were calculated by combining 
the score of four components with corresponding contribution 
rate as follow: 

 

1 2 3 433.901% 18.585% 18.575% 15.780%F F F F F     (18) 

 

1 2 3 437.267% 16.249% 14.861% 14.749%F F F F F     (19) 

 
According to the comprehensive evaluation score pollu- 

tion rank of sites were obtained (Table 7), the higher compre- 
hensive evaluation scores the more serious pollution. During 
both winter-spring and summer-autumn seasons, the pollution 
rank was S4 > S2 > S3 > S1. The result was in accordance with 
the spatial characteristics of the pollutants, i.e., the mass con- 
centration of pollutants of the site of S3 was lower than S2 and 
S4. Hydrological process related to water flow-paths exert sig- 
nificant influence on runoff and contaminant transport (Jones et 
al., 2001; Molenat et al., 2008); further research is needed for 
more detailed information about hydrological process. 

4. Conclusions 

A holistic picture of the water quality of the Maijia River 
was conducted by investigating seven water quality parameters 
through various analysis methods. The main conclusions were 
as follows: 

(1) Owing to diffusion influences, the degree of environ- 
mental pollution sources such as NH3-N, TP and fluoride were 
very unevenly distributed in the Maijia River. Because of fre- 
quent human activities in the middle and lower reaches of the 
river, the mass concentration of CODCr, BOD5, TP, TN had 

roughly trended up during winter-spring season, while CODCr, 
NH3-N, TP, and TN had roughly trended up respectively during 
summer-autumn season. 

(2) Seven water quality parameters were identified by PCA, 
showing that contribution of the first principal component ac- 
counted for more than one third of the total variances which 
played a dominant role in the pollution of the river. It had strong 
positive loading on NH3-N and TN during the winter-spring 

season as well as CODCr, NH3-N and TN during the winter-
spring season, suggesting that NH3-N and TN were main pollu- 
tants throughout the year. Moreover, the degree of pollution at 

monitoring sites by comprehensive evaluation score was S4 > 

S2 > S3 > S1. The results of CCME WQI, which were applied 
to the Maijia River showed that the water quality was poor from 
2008 to 2011 and acceptable from 2003 to 2007 and 2012 to 
2015, respectively but slightly improved from 2012 to 2015, 
suggesting that the measures to protect in-stream quality has 
begun to work. In general, organic matter and nitrogen are still 
the main pollutants in the Maijia River. The government should 
take specific measures to reduce the pollutants. 

(3) The quality of the Maijia River was influenced strongly 
by human activities and non-point pollution sources, such as 
urbanization, Gross National Product (GNP)/capita and the use 
of chemical fertilizers, which were explained very well by lin- 
ear regression equations before 2009. Although local govern- 
ment took some measurements to protect the water quality in 
recent years, the factors influencing water quality still existed 
and were more complex. It is necessary to consider how to uti- 
lize systematical approach to control pollutants and meanwhile, 
keep economic growth. Additionally, based on its peculiar geo- 
logical environment and shallow depth of groundwater of karst 
regions, in order to manage water quality in the Maijia River 
and in future work the scalar complexity of biogeochemical 
mechanisms will have to be focused. 

This study will provide indicators in developing optimal 
strategies and determining priorities for upper reaches of Maotiao 
River pollution control and effective water resources manage- 
ment. 
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