Appendix: Nomenclatures for variables and parameters

 f^{\pm} = net system cost (US\$);

- i = waste management facility, i = 1 for landfill 1, 2 for incin-erator, and 3 for landfill 2;
- j = district, j = 1, 2, 3, 4, 5;
- r = transfer station, r = 1, 2, ..., 6;
- k = planning period, k = 1, 2, 3;
- L_k = the length of period k (day);
- h = waste generation level in district j, h = 1, 2, 3;
- m = expansion option for waste management facilities, m = 1, 2, ..., 6;
- η^{\pm} = recycling rate at transfer station *r* (% of incoming mass to transfer station *r*);
- T_{ijk}^{\pm} = regular waste assigned to facility *i* from district *j* during period *k* (t/d);
- T_{irk}^{\pm} = regular waste from transfer station *r* to facility *i* during period *k* (t/d);
- T_{jrk}^{\pm} = regular waste from district *j* to transfer station *r* during period *k* (t/d);
- M_{ijkh}^{\pm} = excess waste by which the regular waste loading (T_{ijk}^{\pm}) is exceeded (t/d);
- M_{irkh}^{\pm} = excess waste by which the regular waste loading (T_{irk}^{\pm}) is exceeded (t/d);
- M_{jrkh}^{\pm} = excess waste by which the regular waste loading (T_{jrk}^{\pm}) is exceeded (t/d);
- $TR_{ijk}^{\pm} = \text{cost of shipping regular waste from district } j$ to facility *i* during period *k* (\$/t);
- $TR_{irk}^{\pm} = \text{cost of shipping regular waste from transfer station } r$ to facility *i* during period *k* (\$/t);
- $TR_{jrk}^* = \text{cost of shipping regular waste from district } j$ to transfer station r during period k (\$/t);
- $MR_{ijk}^{\pm} = \text{cost of shipping excess waste from district } j \text{ to facility}$ $i, MR_{ijk}^{\pm} \ge TR_{ijk}^{\pm} (\$/t);$
- $MR_{irk}^{\pm} = \text{cost of shipping excess waste from transfer station } r$ to facility $i, MR_{irk}^{\pm} \ge TR_{irk}^{\pm}(\$/t);$

- $MR_{jrk}^{\pm} = \text{cost of shipping excess waste from district } j$ to transfer station $r, MR_{jrk}^{\pm} \ge TR_{jrk}^{\pm}$ (\$/t);
- $OP_{ik}^{\pm} = \text{cost of treating regular waste at facility } i \text{ during period} k (\$/t);$
- OP_{rk}^{\pm} = cost of treating regular waste at transfer station *r* during period *k* (\$/t);
- $MP_{ik}^{\pm} = \text{cost of treating excess waste at facility } i \text{ during period}$ $k, MP_{ik}^{\pm} \ge OP_{ik}^{\pm} (\$/t);$
- $MP_{rk}^{\pm} = \text{cost of treating excess waste at transfer station } r \text{ during period } k, MP_{rk}^{\pm} \ge OP_{rk}^{\pm} (\$/t);$
- FE^{\pm} = residue rate of waste treated at incinerator (% of in-coming mass to incinerator);
- $FT_k^{\pm} = \text{cost}$ for shipping regular residue from incinerator to the landfill during period k (\$/t);
- $MT_k^{\pm} = \text{cost of excess residue from incinerator to landfill dur-ing period } k, MT_k^{\pm} \ge FT_k^{\pm}$ (\$/t);
- RE_{lk}^{\pm} = revenue from incinerator due to regular waste loading during period k (\$/t);
- RM_{1k}^{\pm} = revenue from incinerator due to excess waste loading during period k (\$/t);
- RE_{2k}^{\pm} = revenue from recycling during period k (\$/t);
- RM_{2k}^{\pm} = revenue from recycling due to excess waste loading during period k (\$/t);
- TL_i^{\pm} = cumulative capacity of landfill *i* (t);
- LC_i^{\pm} = daily capacity of landfill *i* (t/d);
- TE^{\pm} = treatment capacity of incinerator (t/d);
- TT_r^{\pm} = treatment capacity of transfer station r (t/d);
- W_{jk}^{\pm} = random waste-generation rate in district *j* during period *k* (t/d);
- p_{ih} = probability h related to waste generation in district *j*;
- FLK_{ik}^{\pm} = capital cost of expanding facility *i* in period *k* (US\$);
- EC_{mk}^{\pm} = expansion option of facility *i* in period *k*, *m* = 1, 2, ..., 6;
- $Y_{imk}^{\pm} = 0.1$ binary variables for identifying whether or not ex-pansion of facility *i* needs to be undertaken in period *k*.