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ABSTRACT. A significant decrease in annual runoff (AR) in the headwater region of Yellow River, China, has been observed during 

the past decades, which produces a recognized impact on long-term water resources management and planning. In this paper, the Pettitt 

method and Sequential Clustering method are used to detect the change point of AR and annual precipitation (AP) series. On the basis 

of the change point, the whole observed period is divided into two periods, before-point (Period I) and after-point period (Period II). The 

distribution characteristic of occurrence number of given extreme AP and AR and the relationship between the AP and AR in the two pe-

riods are analyzed. Then, the impact of AP change on the design AR is quantified. The results indicate that the AP and AR has a change 

point at the location of 1989.The distribution of occurrence number of given AP with more than 500 mm and AR with more than 150 

mm in Period I is clearly different than that in Period II as well as the AP-AR relationship. The quantiles of AP and AR with the given 

non-exceedance probabilities of 0.8, 0.9, 0.95, 0.98, 0.99, 0.995, 0.998 and 0.999 in Period I decrease significantly compared to those in 

Period II. The AP decrease accounts for 53, 53, 54, 57, 60, 62, 66 and 68% of the total decrease in AR at the level of quantile with respect 

to the given eight non-exceedance probabilities from 0.8 to 0.999. Overall, the decrease in the AR quantile is mainly caused by the de- 

crease in AP change. 
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1. Introduction 

Over the past several decades, climate change and human 

activities have produced significant impacts on water resources 

in some parts of the world, featuring a decreasing or increasing 

trend, which has been reported in many literature and received 

great attention from researches, decision makers and the gener- 

al public (Boyer , 2010; Guo, 2013; Ye, 2013; Pina et al., 2016). 

In order to better understand the impact of climate change 

and human activities on water resources, a large number of 

studies have been carried out. Legesse et al. (2003) utilized a 

distributed precipitation-runoff model to study hydrological re- 

sponse of a catchment to climate and land use changes in tropi- 

cal Africa. Their analysis indicated that a 10% decrease in rain- 

fall and 1.5 oC increase in air temperature produced a 30 and 

15% reduction on the simulated discharge respectively. Ma et 

al. (2010) employed a hydrological model and a climate elasti- 

city model to estimate the impact of climate change and human 

activity on runoff decrease in the Miyun Reservoir catchment 

in China. Their results showed that climate impact was ac-  
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countable for about 55 to 51% of the decrease in reservoir in-

flow, while 18% was caused by indirect impact of human ac-

tiveity. Shi et al. (2007) and Miller et al. (2014) investigated the 

urbanization impact on surface runoff and storm runoff. They 

demonstrated that urbanization led to obvious increase in the 

peak flows and decrease in runoff confluence time. Bao et al. 

(2012) used the Variable Infiltration Capacity (VIC) model to 

investigate climate change and human activities impacts on 

various catchments in Haihe basin, China. The results showed 

that the decrease of runoff could be attributed to climate var-

iability (human activities) by 58.5(41.5), 40.1(59.9) and 26.1% 

(73.9%) in Taolinkou, Zhangjiafen and Guantai catchments, re- 

spectively. Öztürk et al. (2013) developed a land use dynamic 

model coupled with a spatially distributed three-dimensional 

surface-subsurface hydrologic model to assess the impact of 

land use change on the watershed hydrological processes. Wang 

et al. (2016) analyzed the 15-day, 30-day, and 60-day extreme 

rainfall change in the next 50 years in the upper basin of the 

Yellow River basin based on dynamical climate model product 

(BCC-CSM-1.1), which was used as input for a SWAT model 

of design rainfall to assess the impact of climate change on cor- 

responding design floods. 

Yellow River, also called the “Mother River”, is the sec- 

ond largest river in China. During the past decades, its basin 

and meteorological conditions have undergone considerable  
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Figure 1. Distribution of hydrological and meteorological stations in Tangnaihai Basin. 

 

changes (Yang et al., 2004; Xie, et al., 2006; Huang et al, 2009). 

For example, Yang et al. (2004) and Huang et al. (2009) report- 

ed that the trends in precipitation haven been constantly nega- 

tive while temperature was increasing during the last half cen- 

tury. Li et al. (2007) assessed the impact of climate change and 

human activity on river runoff in the Wudinghe River in China. 

The results showed that the soil conservation measures account 

for 87% of the total reduction in annual mean runoff in the pe- 

riod from 1972 to 1997, and the reduction of annual mean run- 

off due to changes in precipitation and potential evaporation was 

13%. Guo et al. (2013) investigated the impact of climate change 

and land cover/use transition on the hydrology in the upper Yel- 

low River basin. They found that the runoff decrease in the area 

above Tangnaihai was primarily influenced by climate change. 

To our knowledge there has been no study in the headwater 

region of Yellow River to analyze the impact of annual precip- 

itation (AP) change on design annual runoff (AR) at the level 

of quantile with respect to a given probability. To have this as- 

sessment is very important for decision makers to develop the 

long-term measures and policy for water resources manage- 

ment and planning as design annual runoff is a commonly used 

and important index to assess the richness degree of water re- 

sources. In this paper, we firstly test the AP and AR series and 

then propose a method to quantitatively assess the contribution 

of AP change to the AR at the level of quantile in the headwater 

region of Yellow River (above Tangnaihai Station). In compar- 

ison to the use of a hydrological model to simulate the climate 

change impact, the proposed method needs less data, which 

makes it relatively easier to implement. 

2. Materials and Methods 

2.1. Study Area and Data 

The area above the Tangnaihai (TNH) Hydrometric Sta- 

tion is generally regarded as the headwater region of Yellow 

River, which is located between 95° ~ 103° E longitude and 32° 

~ 35° N latitude. Its catchment area accounts for about 16% of 

the whole Yellow River basin area of 752,000 km2. The AP 

ranges from 250 to 750 mm and the average AP is about 487 

mm for the period 1958 ~ 2007. Eighty percent of the AP oc- 

curs during May-September. The average AR is about 20.47 

billion m3, which constitutes about 35% of the average AR of 

the whole Yellow River basin. The data of AP and AR used 

here is from 1958 to 2007. The AP of the catchment is cal- 

culated by using the Thiessen polygon approach to weight-

average the AP of 10 meteorological stations (Figure 1) and the 

AR is measured at the TNH Hydrometric Station (Figure 1). 

 

2.2. Change Point Detection Method 

The Pettitt method (Pettitt, 1979) and the Sequential Clus- 

tering method (Ding et al., 1986) are used to detect the location 

of change point of AP and AR series. On the basis of the change 

point, the whole series of AP and AR are divided into the two-

subseries, i.e., before-point series and after-point series respect- 

tively. 

For a given series x1, x2, …, xn, the test statistic of Pettitt 

method used to verify if the series is generated from the same 

population distribution can be calculated in accordance to 

Pettitt (1979): 
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By maximizing Equation (1), the change point τ can be 
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obtained: 
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The associated probability PoA of the change point τ is 

computed in accordance to Pettitt (1979): 

 

PoA  2exp{– 6(Kτ)
2

 / (n2 + n3)} (5) 

 

where if PoA < 0.05, it means there is a significant change point 

at the location of τ. 

The Sequential Clustering (SC) method can be described 

in accordance to Ding (1986): 

 

 
1

t

i

i

W x x



   (6) 

 

 
1

n

nn j

j

W x x 





 

   (7) 

 

where x and nx  are the average values of the series x1, x2, …, 

xτ and xτ + 1 , …, xn, respectively. 

The change point τ can be obtained by minimizing the sum 

of Wτ and Wn – t: 

 

τ = min{ Wτ + Wn – t }, t = 2, 3, …, n (8) 

 

2.3. Quantile Estimation of AP and AR 

On the basis of the observed AP and AR series, the quan- 

tiles of AP and AR with given non-exceedance probabilities can 

be estimated by means of hydrological frequency analysis meth- 

od (CWRC, 1995; ASCE, 1996). In this study, the Pearson Type 

Three distribution (PE3) is adopted to estimate the quantiles of 

AP and AR with the consideration that the PE3 is widely used 

and recommended in China (CWRC, 1995). Let X denotes the 

AP or AR, the PE3 probability distribution function is defined 

(Liang et al., 2014): 
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where x is a realization of X with x ≥ a0; a0, β, and α are 
the location, scale and skewness parameter of the PE3 func- 

tion respectively; and Γ(⋅) denotes the gamma function. In ad- 

dition, the following identical equations for the PE3 distribu- 

tion are available: 
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where E(⋅), σ, and Cs represent the expectation, standard devi- 

ation, and coefficient of skewness of PE3 distribution respect- 

tively. 

The parameters E(⋅), σ and Cs can be calculated in accord- 

ance to Hosking and Wallis (1997): 
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where τ3 = λ3 / λ2 and t is computed by the following equations: 

 

If 0 < abs(τ3) < 1/3, let 2
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If 1/3 < | τ3 | < 1, let z = 1 – | τ3 |, then:   
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In Equation (11), the parameters λ1, λ2, and λ3 can be ob- 

tained: 

 

λ1 = β0 

λ2 = 2β1 – β0   

λ3 = 6β2 – 6β1 + β0 (14) 

 

where βr, r = 1, 2, 3 are the probability weighted moments 

(Greenwood et al., 1979). For a sample series in ascending or- 

der, an unbiased sample estimator of βr (denoted as br) can be 

computed by the following equations: 
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Then, the parameters of location a0, scale β, and skewness α of 

the PE3 distribution are calculated by Equation (10). 

 

2.4. Quantification of AP Change Impact on AR 

Let X = {x1, x2, …, xn} and Y = {y1, y2, …, yn} represents the 

AP and AR series respectively. Based on the change point τ of 

AP and AR series, the whole period is divided into two different 

periods: the before-point period (Period I) and the after-point 

period (Period II). In Period I, the AP and AR series are (X 

I, Y 

I) 

= {(x1, y1), (x2, y2), …, (xτ, yτ)} and in Period II, the AP and AR 

series are (X 

II, Y 

II) = {(xτ+1, yτ+1), (xτ+2, yτ+2), …, (xn, yn)}. 

With the purpose of quantifying the impact of AP change 

on AR at the level of quantile with given non-exceedance prob- 

abilities from Period I to Period II, the following procedures 

are designed: 
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Step 1: Capture the dependence structure between the AP 

quantile and AR quantile in Period I.  

On the basis of the series of AP and AR in Period I, the 

quantiles of AP ( I
qAP ) and AR ( I

qAR ) with the given non- 

exceedance probabilities of 0.8, 0.9, 0.95, 0.98, 0.99, 0.995, 

0.998 and 0.999 are estimated respectively by using the hydro- 

logical frequency analysis method (Section 2.3). Then the de- 

pendence structure between the AP quantile and AR quantile in 

Period I can be defined by the following statistical model: 

 

 I I

q I qAP f AR  (16) 

 

where 

I
qAP  and 

I
qAR  denote the quantiles of AP and AR in Pe- 

riod I;       fI (⋅) is a function needed to be determined. 

Similarly, based on the series of AP and AR in Period I, 

the dependence structure between the quantiles of AP and AR 

in Period II can be also obtained: 

 

 II II

q II qAP f AR  (17) 

 

where II
qAP and II

qAR denote the quantile of AP and AR in Pe- 

riod II;   fII (⋅) is a function needed to be determined. 

It is certain that if there is no impact of climate change and 

human activities on the AP and AR, the dependence structure 

between the quantiles of AP and AR should be uniform in the 

two different periods.  

Step 2: Quantify the impact of AP change on AR at the 

level of quantile from Period I to Period II. 

The total change qAR  of AR quantile with a given non- 

exceedance probability from Period I to Period II can be com- 

puted by the following equation: 

 

     II I

q q qAR p AR p AR p    (18) 

 

For a given non-exceedance probability p, the AR quantile 

corresponding to the AP quantile  I
qAP p is  I

qAR p in Period 

I, while in Period II, the AR quantile corresponding to the AP 

quantile  II
qAP p  is  II

qAR p . The AR quantile change caused 

by the change of AP quantile with a given non-exceedance prob- 

ability p can be computed: 

 

      _ II I

q I q qAR p AP f AP p AR p      (19) 

 

where fI indicates the dependence structure between the quan- 

tiles of AP and AR in Period I, which is determined by Equation 

(16). 

The effect of other factors excluding the AP can be assess- 

ed by the following: 

 

     _ _q q qAR p NAP AR p AR p AP     (20) 

 

Considering the fact that the size of AP and AR series in 

Period I and Period II may affect the estimation accuracy of AP 

and AR quantiles and further influence the reliability of the 

dependence structure obtained by Equation (16), the Bootstrap 

method (Hu et al., 2015) is applied to refer the expected estima- 

tions of the AP and AR quantile. Then the expected estimations 

of the AP and AR quantile are used to establish the dependence 

structure between the quantiles of AP and AR (Equation (16)).  

Taking the expected estimation of AR quantile in period I 

as an example, the bootstrap procedure can be carried out as 

follows (Hu et al., 2013, 2015). PE3 function contains three 

parameters: mean value Ex, coefficient of Variation Cv, and co- 

efficient of skewness Cs.  

(1) Using Bootstrap method to draw with replacement 

from the original AR series X 

I = {x1, x2, …, xτ} to obtain a 

random sample of size (called Bootstrap sample) . 

(2) Repeating the bootstrap sampling (step (1)) for M 

times; M groups of bootstrap samples can be obtained, and they 

are denoted by         * * * *
1 2,  , ,  ,j j j jB x x x  j = 1, 2, …, M, 

and M = 1000. 

(3) Using the linear-moment method to estimate param- 

eters of each bootstrap sample; gaining M groups of estima- 

tions of the three parameters denoted by    ,  ˆˆ ,j j
x vE C  ˆ ,j

sC  j = 

1, 2, …, M.  

(4) Based on each group of    ,  ˆˆ ,j j
x vE C  ˆ ,j

sC  j = 1, 2, …, 

M, and for a given non-exceedance probability p, the corre- 

sponding estimation of AR quantile  IAR p in period I can be 

acquired. Therefore, M groups of estimation of  IAR p can be 

obtained using M groups of parameters, denoted by  j
IAR  ,p  

j = 1, 2, …, M. 

(5) Using the series
   ,j
IAR p  j = 1, 2, …, M, the expect- 

ed estimation of the AR quantile  IAR p can be calculated by 

E(ARI (p))    1
1  .

M j

Ij
M AR p


   

3. Results 

3.1. Change Point Analysis of AP and AR  

The time series of AR and AP are shown in Figure 2. It can 

be seen that the number of extreme AR and AP after about 1990 

is obviously less than that before 1990. 

In order to detect the location of the change points, the 

Pettitt method and the SC method are employed. The testing 

results show that the AR has the change point with a 5% signif-

icant level at 1989 detected by both of the two methods, while 

for the AP, the change points are 1985 or 1989 (Pettitt) and 1989 

(SC) (Figure 3). Finally, the 1989 is selected as the change point 

for both of the AP and AR. On the basis of the change point of 

1989, the whole period 1958 ~ 2007 is divided into two different 

periods: 1958 ~ 1989 is Period I and 1990 ~ 2007 is Period II. 

 

3.2. Characteristics of AP and AR Before and After the 

Change Point 

To assess the performance of PE3 distribution for fitting 

the AP and AR series, the Akaike’s information criteria (AIC), 

Bayesian information criterion (BIC) and Kolmogorov-Smir- 

nov test (KS) are used. It can be seen from Table 1 that the PE3 



Y. M. Hu et al. / Journal of Environmental Informatics 37(2) 122-129 (2021) 

126 

 

 

  

 
 

Figure 2. Time series of AR and AP observations. The red line indicates the linear trend of the corresponding series. 

 

 
 

Figure 3. Pettitt ((a) and (c)) and Sequential Clustering method ((b) and (d)) for detecting a change point of AR ((a) and (b)) and AP 

((c) and (d)). Horizontal line represents the 5% significant level. 

 

Table 1. AIC, BIC, and KS Test Restuls of PE3 

 AP(I) AP(II) AR(I) AR(II) 

AIC 354.2 195.6 343.5 185.4 

BIC 358.6 198.2 347.9 188.2 

KS (p value) 0.987 0.989 0.983 0.978 

 

match the series well and pass the hypothesis test at the signify- 

cant level of 0.05 that the AP and AR series at Period I and 

Period II obeys the PE3 distribution. 

Figure 4 provides the worm plot (Buuren and Fredriks, 

2001; Hu et al., 2017) at 90% confidence level for further as- 

sessing the performance of PE3. It can be seen that all point 

(bias) are located within the 5 and 95% centile curves, and 

almost all points occur nearby the zero line. This also illustrates   

that the PE3 match well the AP and AR series and is acceptable 

for describing the distribution of the AP and AR. 

Figure 5 presents the linear relationship between the AP 

and AR in the two different periods, respectively. It can be seen 

that the relationship between the AP and AR in Period II is sig- 

nificantly different from that in Period I. For a given AP event, 

the corresponding AR in Period II is less than that in Period I.  

The Poisson distribution (Siteka and Cellerb, 2015) is used 

to analyze the probability related to occurrence number of a 

given extreme AR or AP per year in the two different periods. 

As can be observed in Figures 6(a) and (b) that the occurrence 

probability of extreme AR with more than 200 and 150 mm in 

period II are less than those in period I for the given occurrence 

numbers of 1, 2, 3, 4 and 5, which means that the occurrence 

probability of the above extreme AR will become less in the 

future than that in the past period. Similarly, for the extreme AP 

with more than 550 and 500 mm (Figures 6(c) and (d)), the 

corresponding occurrence probability of the above extreme AP 

will also become less in the future than that in the past period. 

  

3.3. Estimation of AP and AR Quantiles  

Figure 7 provides the cumulative distribution function 

Obs.

Linear trend
Obs.

Linear trend

1989

1989

1989

1989

1985
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(CDF) of the AR and AP in the two different periods. It can be 

observed that the CDFs of AR and AP in Period II are down-

shifted compared to those in Period I. This indicates that the 

quantiles of the AR and AP with given non-exceedance prob- 

ability in Period II decrease compared to those in Period I. 

 

 
 

Figure 4. Worm plot for assessing the performance of PE3 

function to fit the AP and AR series in Periods I and II. 

Hollow circles indicate the bias and the two dashed lines 

mean the 90% confidence interval. 

 

 
 

Figure 5. Relationship between AP and AR in two different 

periods. Obs-I (Obs-II) and Linear relationship I (Linear 

relationship II) indicate the group of the AP and AR 

observations and corresponding linear trend in Period I 

(Period II). 

 

The hydrological frequency analysis (Section 2.3) and 

Bootstrap method (Section 2.4) are used to refer the expected 

estimations of the quantiles of AR and AP with given non-

exceedance probabilities of 0.8, 0.9, 0.95, 0.98, 0.99, 0.995, 

0.998 and 0.999 in the two different periods (Figure 8). It is 

found that for all given non-exceedance probabilities, the quan-

tiles of AR and AP in period I obviously decrease compared to 

those in period II. For example, the 0.999-quantile of AR in 

period I is 472 mm but in period II it is 360 mm, which reduces 

by 24%; for AP, the 0.999-quantiles are 734 mm in period I and 

661 mm in period II, which reduces by 10%.  

 

 
 

Figure 6. Probability of occurrence number of different 

events per year in Periods I and II. (a) ~ (b): AR with given 

thresholds; (c) ~ (d): AP with given thresholds. 

 

 
 

Figure 7. Cumulative distribution function (CDF) of AR and 

AP in Periods I and II. 

 

 
 

Figure 8. Relationship between the quantiles of AP and AR in 

Periods I and II. AP-AR-I (AP-AR-II) and Linear relationship 

I (Linear relationship II) indicate the group of the quantiles of 

AP and AR and corresponding linear relationship in Period I 

(Period II). 
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On the basis of the expected estimations of the above AP 

and AR quantiles, the linear relationship between the quantiles 

of AP and AR in the two different periods is established, re- 

spectively. As can be seen in Figure 8 that the two AP-AR 

linear relationship are noticeably diff erent in the two periods. 

For a given same AP, the corresponding AR in period II is less 

than that in period I. 

 

 
 

Figure 9. Contribution of AP change to the decrease in AR in 

terms of the quantiles with given non-exceedance 

probabilities. AP-AR (NAP-AP) indicates the decrease in AP 

is caused by AP change (other factors). 

 

3.4. Quantification of AP Change Impact on AR   

The dependence structure between AP and the correspond- 

ing AR at the level of quantile in period I is estimated by using 

a linear function to fit AP quantiles and the corresponding AR 

quantiles (Figure 8). The formula is shown in Equation (21). 

The coefficient of determination is 0.99, which indicates that 

the relationship between the qunatiles of AP and the corre- 

sponding AR is extremely strong: 

 

   1.138 362I I

q qAR p AP p       (21) 

 

On the basis of Equation (21), combined with equations 

(18) ~ (20), the impact of AP change on the AR at the level of 

quantile is quantified. It can be seen from Figure 9 that the im- 

pact of AP change on the AR is dominated for all given non-

exceedance probabilities, and with the increase of the prob- 

ability, its influence gradually become larger. In terms of others 

factors (all factors excluding precipitation), their impacts on 

decrease in the AR seems steady for all given probabilities. 

Taking the 0.999-quantiles as an example, the AR quantile in 

Period II decrease 115 mm compared to that in Period I, in 

which 79 mm is caused by the AP and 36 mm is caused by other 

factors. For the given eight non-exceedance probabilities from 

0.8 to 0.999, the AP change accounts for 53, 53, 54, 57, 60, 62, 

66 and 68% of the total decrease of the AR. The contribution 

of AP change to the decrease in AR becomes larger with the 

increase of the non-exceedance probability. 

4. Conclusions 

In this paper, the change characteristics of AP and AR have 

been analyzed and the impact of AP change on the decrease in 

AR at the level of quantile has been assessed in the headwater 

region of Yellow River, China.  

A change point at the location of 1989 of the AP and AR 

is detected by using the Pettitt and Sequential Clustering meth- 

ods. Before and after the change point, also called Period I and 

Period II, the relationship between the AP and corresponding 

AR in Period II (after 1989) is obviously different than that in 

Period I (before 1989). The Poisson distribution is used to ana- 

lyze the probability of occurrence number of given extreme AP 

and AR per year in the two different periods. The occurrence 

probability of the extreme AR more than 150 mm and extreme 

AP more than 500 mm become less in Period II than that in 

Period I.  

The CDFs of the AP and AR are obtained and the quantiles 

of AP and AR with given non-exceedance probabilities of 0.8, 

0.9, 0.95, 0.98, 0.99, 0.995, 0.998 and 0.999 are estimated in 

the two different periods. Overall, the quantiles of AR and AP 

with given probability in Period II clearly decrease compared 

to those in Period I. The reduction in the AR is mainly caused 

by the decrease in the AP. For the given eight non-exceedance 

probabilities from 0.8 to 0.999, the AP change accounts for 53, 

53, 54, 57, 60, 62, 66 and 68% of the total decrease in the AR. 

The contribution of AP change to the decrease in AR becomes 

larger with the increase of the non-exceedance probability.  

A few previous studies also reported that the precipitation 

and runoff obviously decrease (Yang et al., 2004; Li et al., 

2007; Huang et al., 2009) and the runoff decrease is primarily 

reflected by the precipitation change as there are no large dams 

or major irrigation diversions in this study area (Xie et al., 

2006; Zhou et al., 2006; Guo et al., 2013). However, different 

with previous studies, in our study, we aim to analyze the im- 

pact of annual precipitation change on annual runoff at the level 

of quantile. 

Excluding AP change effect on AR, the major factors in- 

fluencing the AR should be temperature, evapotranspiration 

and permafrost. In past several decades, temperature has risen 

averagely 0.63 ºC in the headwater region of Yellow River. The 

increase in temperature resulted in the increase of evaporation, 

which reduced the surface runoff. In addition, the increase of 

ground temperature leaded to the reduction of the permafrost 

thickness and the degradation of permafrost; as a result, the in- 

filtration increased and surface runoff decreased. Under the 

conditions of global climate change, if the temperature in the 

headwater region of the Yellow River continues to rise, along 

with the decrease of precipitation, increase of evapotranspira- 
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tion and degradation of permafrost, the runoff may tend to de- 

crease more, which should be paid more attention on for water 

resources management and planning. 
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