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ABSTRACT. The spatial structure of climatic variables synthesized by a weather generator has considerable impact on the modeling of 

hydrological variability; however, in most cases, it needs computationally intensive work to reproduce multisite and/or multivariate cor- 

relations. This work proposed a two-stage weather generator (TSWG) to preserve intersite and intervariable correlations of daily precip- 

itation, maximum and minimum temperatures. The first stage generates daily precipitation and temperature for each site and for each 

variable with, but not limited to, the Richardson-type approach. The second stage rebuilds the multisite multivariate correlation using a 

distribution-free shuffle procedure. The TSWG was applied to a network of 15 stations in the Jing River catchment (Northwest China). 

It reproduced the statistical parameters and multisite and multivariate correlations well. Furthermore, indirect validation by hydrologi- 

cal modeling showed TSWG outputs could be used satisfactorily for simulating streamflow variability. As a distribution-free method, 

the correlation reconstruction method can be applied to variables with different probability distributions. The TSWG can efficiently 

reconstruct the correlation with one optimization for all stations and all variables, which is superior to most current methods operated 

once for one station pair and one variable. The TSWG provides an option for improved multisite and multivariate weather generation.  
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1. Introduction 

Weather generators are powerful tools that can produce 

long-term climate data time series with statistical character- 

istics similar to those of observations (Richardson, 1981; Bár- 

dossy and Plate, 1992; Semenov and Barrow, 1997; Wilks, 

1998), and they have been used widely in impact assessment of 

climate change on hydrology (Wilby and Harris, 2006; Zhang 

et al., 2011). However, one important aspect related to the ap- 

plication of weather generators to hydrological modeling is that 

their spatial structure has considerable impact on the modeling 

of hydrological variability (Clark et al., 2004; Mehrotra and 

Sharma, 2007; Srikanthan and Pegram, 2009; Bárdossy and 

Pegram, 2012). For example, when using climate data produced 

by a single-site weather generator (SSWG) as the input to a 

conceptual and/or distributed hydrological model, the floods 

and variances of streamflow are substantially underestimated, 

whereas they are reproduced well when using the synthetic cli- 

mate from a multisite weather generator (MSWG) (Khalili et 

al., 2011; Li, 2014; Chen et al., 2016; Li et al., 2017). This 

highlights the importance of multisite weather generation for 

the modeling of hydrological variability.  

Three types of weather generators considering the spatial 
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structure of climatic variables have been developed: nonpara- 

metric, parametric, and semiparametric models (Mehrotra and 

Sharma, 2009; Li, 2014; Srivastav and Simonovic, 2015). A non- 

parametric MSWG mainly incorporates two approaches: a hid- 

den Markov chain model and a resampling method. The hidden 

Markov chain model reproduces spatial correlation through re- 

lating some exogenous predictors to daily weather data at mul- 

tiple sites via a finite number of hidden weather states (Rex, 

1993; Boorman and Sefton, 1997; Thyer and Kuczera, 2003a, 

b; Mehrotra et al., 2006); however, it is comparatively com- 

plex because of the excessive verification and optimization re- 

quired (Wilks, 1999; Mehrotra et al., 2006). The resampling 

method can simultaneously generate multisite and multivari- 

ate climate by conditionally resampling the observations, but it 

remains difficult to extrapolate the potential changes in cli- 

matic extremes and variability (Beersma and Buishand, 2003; 

Wilby et al., 2003; Caraway et al., 2014; King et al., 2014). 

A parametric MSWG consists of two principal methods: a 

chain-dependent process and generalized linear models. The 

multisite chain-dependent process is extended from the single- 

site version using spatially correlated random numbers (Wilks, 

1998, 1999). However, the random number generation is com- 

putationally intensive because a collection of k × (k – 1) / 2 em- 

pirical curves has to be developed for all station pairs, for each 

precipitation process or variable, and for each month for a net- 

work of k stations (Qian et al., 2002; Brissette et al., 2007; 

Srikanthan and Pegram, 2009; Baigorria and Jones, 2010). The 

generalized linear models perform well in weather generation 
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and GCM downscaling, especially when large-scale predictors 

are introduced; however, they require considerable parameter 

estimation in connection with the relationships between the pre- 

dictands and the predictors (Chandler and Wheater, 2002; Yang 

et al., 2005; Furrer and Katz, 2007; Verdin et al., 2015; Asong et 

al., 2016). Although parameter estimation is not a challenge 

with the increase of computing power, simply structured and 

easy-to-implement approaches are highly desired. 

Comparatively, semiparametric models simplify the algo- 

rithm substantially by combining the strengths of both paramet- 

ric and nonparametric approaches (Angulo et al., 1998; Fowler et 

al., 2005; Mehrotra and Sharma, 2007; Srivastav and Simono- 

vic, 2015), most of which are hybrid Markov-based models 

with a resampling method (Palutikof et al., 2002; Apipattanavis 

et al., 2007; Steinschneider and Brown, 2013). Among the semi- 

parametric methods, the matrix recorrelation approach can effi- 

ciently reconstruct multisite correlations by adding a postproc- 

essing step to the data obtained from the SSWG or other sources. 

For example, Iman and Conover developed a postprocessing, 

distribution-free method for pairing independent variables to 

induce the desired rank correlation (Iman and Conover, 1982). 

As a distribution-free method, its application is not limited to 

the probability distribution of data and thus, it has been used 

effectively in recorrelating precipitation amounts and dura- 

tions (Zhang, 2005; Chen et al., 2009), and multiple series of 

precipitation from SSWG (Tarpanelli et al., 2012; Li, 2014). A 

similar method has been used successfully for the improve- 

ment of the correlation of precipitation obtained from regional 

climate models (Bárdossy and Pegram, 2012; Pegram and 

Bárdossy, 2013). 

Overall, most of the above models can satisfactorily ge- 

nerate multisite and/or multivariate weather data; however, 

because of differences in the structures and algorithms of the 

models, their efficiencies differ considerably. Given that most 

models are computationally intensive, semiparametric models 

can efficiently reconstruct intersite or intervariable correlations, 

even for variables with different probability distributions. Fur- 

thermore, the performances of semiparametric methods are 

found comparable with those of parametric methods, both for 

weather statistics and hydrological modeling (Tarpanelli et al., 

2012; Li, 2014). Therefore, semiparametric MSWGs have con- 

siderable potential in multisite and multivariate weather gen- 

eration and studies of the impact of climate change. 

A semiparametric model, e.g., a two-stage weather genera- 

tor (TSWG), was developed for multisite precipitation gene- 

ration in our earlier study (Li, 2014). In the first stage, the 

TSWG generates single-site precipitation and it then rebuilds 

the spatial coherency in the second stage using a distribution- 

free method. This article describes the extension of the TSWG 

to incorporate daily maximum and minimum temperatures to 

provide a useful tool for multisite and multivariate weather 

generation. The remainder of the paper is organized as follows. 

Section 2 provides a detailed description of the algorithm for 

the model development. Section 3 assesses the model perfor- 

mance through direct and indirect evaluation, and the final sec- 

tion summarizes and discusses the advantages and disadvan- 

tages of the TSWG. 

2. Model Formulation 

The method was developed and evaluated based on the 

Jing River catchment in northwest China, which encompasses 

an area of 45,421 km2 (Figure 1). The Jing River catchment 

was selected because it is a typical catchment with high intra- 

annual and interannual variability of climate and runoff. The 

area-averaged annual precipitation is 542.1 mm, in which snow 

in winter and spring can be negligible and 55% of the precipi- 

tation falls in the flood season between July and September 

(1961 ~ 2005). Therefore, the variable climate and runoff are 

appropriate to investigate the model performance related to 

variability of climate and runoff. The daily precipitation, maxi- 

mum and minimum temperatures obtained from 15 weather 

stations during 1961 ~ 2001 were used for the model develop- 

ment and direct evaluation. The monthly streamflow at the 

catchment outlet for the same period was used to calibrate a 

semidistributed hydrological model, e.g., the Soil and Water 

Assessment Tool (SWAT) (Arnold et al., 1998), and for indi- 

rect evaluation of the performance of the TSWG. 

 

 
 

Figure 1. Location of the Jing River catchment (NW China) 

used as an example study area. 

 

Within the framework of the TSWG, a two-stage operation 

is undertaken for multisite and multivariate weather genera- 

tion. The first stage generates daily precipitation (P) and maxi- 

mum (Tmax) and minimum (Tmin) temperatures on a single-site 

and a single-variable basis. The second stage rebuilds the inter- 

site and intervariable correlations. A flow chart of the model 

development and evaluation is presented in Figure 2. 

 

2.1. First Stage: Single-Site Weather Generation 

The daily data were generated for each station according 

to the Richardson-type approach (Richardson, 1981); however, 

the weather generation algorithm can be changed to use other 

methods, such as the semi-empirical methods in the LARS- 
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WG (Racsko et al., 1991; Semenov and Barrow, 1997). The 

Richardson-type approach has been documented in other litera- 

ture (Richardson and Nicks, 1990; Wilks and Wilby, 1999; Li 

et al., 2013, 2014) and therefore, the procedure of weather gen- 

eration is described briefly here. In the chain-dependent proc- 

ess, the precipitation occurrence and amounts are generated by 

the first-order Markov chain and the skewed normal distribu- 

tion, respectively. Daily Tmax and Tmin are simulated stochastic- 

ally using a standard normal distribution without consideration 

of the dependence on the dry/wet status and the intervariable 

correlation. The parameter estimation and generation of precip- 

itation and temperature are all performed on a monthly basis. 

The 500-year daily data for each station and each variable are 

simulated. Each variable is generated independently and the 

data for each day are generated independent of others, which is 

not true in reality because they are actually cross- and serial 

correlated variables. 

 

 
 

Figure 2. Flowchart of the development and evaluation of the 

two-stage weather generator. 

 

2.2. Second Stage: Intersite and Intervariable Correlation 

Reconstruction 

The second stage rebuilds the intersite and intervariable 

correlations of precipitation and temperature through the dis- 

tribution-free method developed by Iman and Conover (1982). 

The theoretical basis can be described as follows. To assign a 

desired correlation matrix [C ] to a random row vector [X ], two 

steps should be undertaken. First, [C ] is decomposed as [C ] = 

[R ][R' ] and then, the upper triangular matrix [R′] is used to 

multiply [X ] to generate a new matrix [X ][R' ] with the desir- 

ed correlation matrix [C ]. 

In previous version of TSWG in Li (2014), [X] is a data 

matrix for multisite precipitation only. However, because this 

study extended the TSWG to a multivariate model, [X] be- 

comes an n × k matrix with n rows of daily data for SSWG- 

generated precipitation and temperature for a certain month (n = 

years × days in a month, e.g., 15,500 for January in this study) at 

k columns of stations and variables (k = stations × variables, e.g., 

45 in this study). The matrix recorrelation can be accomplished 

in five steps, and example datasets of the SSWG-generated 

precipitation for 10 days at weather stations G1 and G2 with a 

correlation coefficient of 0.036 are presented in Table 1. 

Step 1. Data transformation. The raw data cannot be 

used directly for matrix recorrelation and they have to be con- 

verted to scores following a certain probability distribution. For 

example, Bárdossy and Pegram (2012) converted the ranks of 

precipitation to cumulative probabilities. This study converted 

the ranks of [X ] to an n × k van der Waerden scores matrix [S ], 

which can be calculated using the inverse function of a stand- 

ard normal distribution (Li, 2014). Because tied ranks increase 

the difficulty in the subsequent reordering step, two operations 

are used to assign a unique rank to each data element. First, 

additional decimal places are retained from the SSWG to dif- 

ferentiate nonzero values, which works well for temperature 

and wet-day precipitation amounts. Second, small values of 

less than the threshold definition of a wet event (0.1 mm in this 

study) are assigned to dry days. The raw data [X] are first 

multiplied by 1,000 to make the precipitation threshold 100, 

which enlarges the range of trace values to be added to dry 

days. Then, a precipitation amount is assigned to the jth dry day 

with the value of j × 99 ÷ m, where j = 1, 2, …, m and m is the 

total number of dry days. A new temporary matrix [T1] is 

generated in which the dry days are arranged in increasing or- 

der and thus, they are serially dependent. A random permute- 

tion is performed for each column in [T1] to obtain another 

temporary data matrix [T 2]. Therefore, [T 2] is actually the ma- 

trix used for the data transformation to obtain the Rank1 and 

Score values shown in Table 1. 

Step 2. Decomposition of correlation matrix. If [Cobs] is 

the k × k observed rank correlation matrix, it can be decompos- 

ed as [Cobs] = [R][R′] by the Cholesky factorization scheme. It 

should be noted that [Cobs] might be a nonpositive correlation 

matrix, which makes Cholesky factorization impossible. In such 

cases, a spectral decomposition procedure is used to generate a 

new positive-definite matrix (Rebonato and Jäckel, 2000). For 

example, the observed correlation matrix [Cobs] of [1, 0.605; 

0.605, 1] can be decomposed to obtain an upper triangular ma- 

trix [R′] of [1, 0.605; 0, 0.796]. 

Step 3.  Data reordering. A new n × k score matrix [Score 

2], shown in Table 1, can be obtained by multiplying the n × k 

[Score 1] with the k × k [R′]. [Rank 2] are the ranks of [Score 2] 

and they can be used to rearrange [T 2] to obtain [X 1] with the 

desired cor- relation matrix. However, it is possible that the 

actual correla- tion matrix of [X 1] will not be as expected. For 

example, the cor- relation matrix of [X 1] is actually [1, 0.663; 

0.663, 1], where the values are greater than the target 

correlation. 

Step 4. Improvement of intersite and intervariable co- 

rrelations. The rebuilt correlation for [X 1] was 0.663, which  



Z. Li et al. / Journal of Environmental Informatics 35(2) 148-159 (2020) 

 

151 

 

Table 1. Example Datasets for the Shuffle Procedure  

Day 
X  T1  T 2  Rank 1  Score 1  Score 2 

G1 G2  G1 G2  G1 G2  G1 G2  G1 G2  G1 G2 

1 0 5.1  16.5 5135.3  49.5 10574.7  3 9  -0.60 0.91  -0.60 0.36 

2 0 0  33.0 19.8  16.5 59.4  1 3  -1.34 -0.60  -1.34 -1.29 

3 0 0  49.5 39.6  1938.3 39.6  7 2  0.35 -0.91  0.35 -0.51 

4 0 48.6  66.0 48580.8  33.0 19.8  2 1  -0.91 -1.34  -0.91 -1.61 

5 0 0  82.5 59.4  39943.8 1032.8  10 7  1.34 0.35  1.34 1.09 

6 1.9 0  1938.3 79.2  2937.9 99.0  8 5  0.60 -0.11  0.60 0.27 

7 31.5 0  31510.4 99.0  31510.4 48580.8  9 10  0.91 1.34  0.91 1.61 

8 39.9 10.6  39943.8 10574.7  82.5 100.0  5 6  -0.11 0.11  -0.11 0.02 

9 0 1.0  99.0 1032.8  66.0 5135.3  4 8  -0.35 0.60  -0.35 0.27 

10 2.9 0.1  2937.9 100.0  99.0 79.2  6 4  0.11 -0.35  0.11 -0.21 

Correlation 0.036           0.357  0.651 

Note: The desired correlation coefficient is 0.605. X is the SSWG-generated daily precipitation for stations G1 and G2. The description of the other 

variables can be found in Section 2.2. 

 

Table 1. Continued 

Rank 2  X 1  X 1-occ  Score 3  Rank 3  X 2  X 2-occ 

G1 G2  G1 G2  G1 G2  G1 G2  G1 G2  G1 G2  G1 G2 

3 8  0 5.1  0 5.1  -0.60 0.37  3 8  0 5.1  0 5.1 

1 2  0 0  0 0  -1.34 -1.28  1 2  0 0  0 0 

7 3  1.9 0  0 0  0.35 -0.52  7 3  1.9 0  0 0 

2 1  0 0  0 0  -0.91 -1.61  2 1  0 0  0 0 

10 9  39.9 10.6  0 0  1.34 1.08  10 9  39.9 10.6  0 0 

8 7  2.9 1  1.9 0  0.60 0.27  8 6  2.9 0.1  1.9 0 

9 10  31.5 48.6  39.9 10.6  0.91 1.61  9 10  31.5 48.6  39.9 10.6 

5 5  0 0  2.9 1  -0.11 0.02  5 5  0 0  2.9 0.1 

4 6  0 0.1  0 0.1  -0.35 0.28  4 7  0 1.0  0 1.0 

6 4  0 0  31.5 48.6  0.11 -0.21  6 4  0 0  31.5 48.6 

   0.663  0.663  0.624     0.597  0.597 

 

is greater than the input value of 0.605 in [Cobs] (Table 1). Ob- 

viously, the deviation is caused by the data transformation in 

Step 1 because Score 1 had a correlation coefficient of 0.357, 

which should be close to zero. The error further causes greater 

correlation coefficients of 0.651 for Score 2 and of 0.663 for [X 

1]. Therefore, the input correlation matrix [Cobs] in Step 2 

should be adjusted to a smaller value. After several trials, the 

correlation coefficient in [Cobs] can be adjusted to 0.596 to ge- 

nerate Score 3 with a correlation coefficient of 0.624 and a re- 

sultant value of 0.597 for [X 2]. 

Similar problems exist in all the datasets (Figure 3). Tak- 

ing March as an example, the intersite and intervariable corre- 

lations from the SSWG (Figure 3(a)) are substantially improve- 

ed by the above three steps (Figure 3(b)), and the intersite cor- 

relation for Tmax or Tmin and the intervariable correlation for Tmax 

& Tmin are almost the same as the observations. However, the 

intersite correlation for P & P and the intervariable correla- tion 

for P & Tmax and P & Tmin are different. The previous multi- site 

TSWG fixed this problem by adjusting the input correla- tion 

matrices of precipitation [Cobs] in Step 2 according to the strong 

linear relationships between the simulated and observed 

correlations. The equations developed between the observed 

and generated correlation coefficients for P & P, P & Tmax, and 

P & Tmin are [Cgen] = 1.147 [Cobs] – 0.2906 (R2 = 0.98), [Cgen] = 

0.861 [Cobs] + 0.042 (R2 = 0.92), and [Cgen] = 0.6661 [Cobs] – 

0.002 (R2 = 0.96), respectively. In this multisite and multivar- 

iate version, the intervariable correlation of P & Tmax and P & 

Tmin are also adjusted. It should be noted that the adjustment of 

the observed correlation matrices is performed separately for 

each pair of variables. The adjustment works well and the 

intersite and intervariable correlations are reproduced almost 

perfectly (Figure 3(c)). 

Step 5. Adjustment of precipitation occurrence struc- 

ture. The above four steps recorrelate the input variables well; 

however, the precipitation occurrence structure is perturbed be- 

cause the wet events are rearranged (Figure 4). To reduce the 

consequences of possible adverse effects on occurrence struc- 

ture, the occurrence of the shuffled data [X *] can be adjusted 

according to that of the SSWG in [X ]. For each month, one 

control station out of all the stations can be selected if it has the 

greatest mean cross-correlation coefficients. Then, the oc- 

currence auto-correlation of [X *] is modified by reordering the 

rows so that occurrences for the control station in [X *] (e.g., [X 

2] in Table 1) closely match those of the control station in [X ]. 

That is, the occurrences of the other stations, as well as the 

temperatures, are rearranged simultaneously based on occur- 

rences for the control station. 

To explain the adjustment method more clearly, a larger 
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example dataset covering 10 days for 5 gauge stations is pres- 

ented in Table 2. Let G4 be the control station, the desired oc- 

currence for which can be obtained from [X ]. Specifically, G4 

has four wet days in the first column of Table 2, e.g., the 1st, 4th, 

8th, and 9th days; however, the four wet days in the ‘occurrence 

after shuffle’ column are placed in the order of 3rd, 4th, 7th, and 

9th. To match the two occurrence series, the 3rd and 7th lines are 

moved to the 1st
 and 8th

 lines, respectively. After the occurrence 

adjustment, the serial lag-1 correlation of TSWGgenerated pre- 

cipitation is very similar to that of the SSWG and better than 

without occurrence adjustment; the adjustment has little impact 

on the serial lag-1 correlation of temperature (Figure 4). These 

results imply that this step successfully reconstructs the occur- 

rence structure. Returning to the dataset in Table 1 and using G1 

in [X ] as a control station, the shuffled data [X 1] and [X 2] can 

be rearranged as [X 1-occ] and [X 2-occ], respectively. The cor- 

relation coefficient of the shuffled data [X 2] is the same as [X 2 -

occ], which implies that the occurrence adjustment has no 

impact on the intersite and intervariable correlations. 
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Figure 3. Intersite and intervariable correlations of daily pre- 

cipitation (P) and temperature (Tmax and Tmin) for the obser- 

vations (OBS) versus (a) SSWG-generated data, (b) TSWG- 

generated data without (TSWG-raw) and (c) with (TSWG- 

linear) linear adjustment of the input correlation matrices. 

3. Model Evaluation 

3.1. Evaluation Procedure 

Direct and indirect evaluations were undertaken to assess 

the performance of the TSWG. The direct evaluation compar- 

ed the observed versus simulated statistics related to precipi- 

tation and temperature, such as the averages and standard de- 

viations of P, Tmax, and Tmin, joint probability and continuity 

ratios of precipitation occurrence and amount, and daily tem- 

perature range. 

The indirect evaluation used the observed and generated 

climate data as inputs to the SWAT model to compare their 

effects on streamflow, such as the averages, standard devia- 

tions, and maxima and minima of streamflow. Streamflow for 

the periods 1961 ~ 1965 and 1966 ~ 1970 were used for model 

calibration and validation, respectively. To minimize the 

effects of other climatic factors on streamflow, only precipi- 

tation and temperature were taken from the historical/generated 

data, whereas other variables (e.g., humidity, wind speed, and 

solar radiation) were obtained from one station generated by 

the SWAT. The Nash-Sutcliffe model efficiency coefficients 

of calibration and validation period were both 0.78 for monthly 

streamflow, implying the streamflow could be modeled satis- 

factorily by the SWAT. To avoid biases from the SWAT, the 

observed discharge during 1961 ~ 2001, used hereafter, reflects 

modeled data instead of actual observed data. 

To explain the performance of the TSWG better, a counter- 

part model, e.g., the multisite chain-dependent model propos- 

ed by Wilks (1999), is introduced for context. Details of the 

algorithms of the chain-dependent model used in this study can 

be found in Li et al (2017). The precipitation occurrence and 

amounts were generated by the first-order Markov chain and the 

mixed exponential distribution, respectively, and the tempera- 

ture was generated using a standard normal distribution with 

consideration of the dependence on the dry/wet status. For pre- 

cipitation amount, one method used the untapered scale para- 

meters to assign the smaller/greater of the two mixed expo- 

nential scale parameters directly to non-zero amounts with 

smaller/greater expected values, whereas the other method 

used tapered scale parameters to generate large precipitation 

amounts by continuously varying the larger of the two scale 

parameters. However, the precipitation amounts generated by 

the tapered scale parameters overestimated the averages, ex- 

tremes, and variability of streamflow (Li et al., 2017); there- 

fore, the precipitation amounts generated using the untapered 

scale parameters were used in this study. 

 

3.2. Direct Evaluation 

3.2.1. Averages and Standard Deviations 

The averages and standard deviations of the observed daily 

P, Tmax, and Tmin are reproduced well by the TSWG since the 

slopes and determination coeffecients (R2) between the observ- 

ed and generated values are close to ones while the root mean 

square errors and intercept are very small or equal to zeros (Ta- 

ble 3). The TSWG-generated statistics are actually the same as 

the SSWG because they are generated in the first stage of the 

operation and retained during the shuffle procedure in the se- 

cond stage. Furthermore, no difference is detected in the abili- 

ties of the SSWG, TSWG, and chain-dependent model to repro- 

duce the averages and standard deviations of the daily climate 

(Table 3). 

The statistics of the watershed-averaged daily precipita- 

tion and temperature are used to assess the spatial structure of 

the climate. The averages and standard deviations of the SSWG- 

generated daily precipitation (Figures 5(a) and 5(d)) and the 

standard deviations of the SSWG-generated daily temperature 

(Figures 5(e) and 5(f)) are all smaller than the observations; how- 

ever, all the statistics calculated from the TSWG-generated daily  
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Table 2. Example of Occurrence Structure Adjustment  

WG occurrence  Occurrence after shuffle  Adjusted occurrence 

control  Old order G1 G2 G3 G4 G5  New order G1 G2 G3 G4 G5 

1  1 1 1 1 0 0  3 1 1 1 1 1 

0  2 0 0 0 0 0  1 1 1 1 0 0 

0  3 1 1 1 1 1  2 0 0 0 0 0 

1  4 1 1 1 1 1  4 1 1 1 1 1 

0  5 0 0 0 0 0  5 0 0 0 0 0 

0  6 0 0 0 0 0  6 0 0 0 0 0 

0  7 1 0 0 1 0  8 0 0 0 0 0 

1  8 0 0 0 0 0  7 1 0 0 1 0 

1  9 1 1 1 1 1  9 1 1 1 1 1 

0  10 0 0 0 0 0  10 0 0 0 0 0 

Note: Suppose G4 is the control station. The occurrence after the shuffle is rearranged according to that of the control station from the SSWG. 

0 and 1 represent dry and wet status, respectively. WG occurrence refers to the occurrence from single-site weather generator (SSWG); control 

refers to the data from control station. 
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Figure 4. SSWG-generated versus TSWG-generated serial lag-1 correlation for (a) daily precipitation P, (b) daily maximum tem- 

perature Tmax, and (c) daily minimum temperature Tmin. Shuffle and Shuffle-occ mean the data are shuffled with or without occurrence 

adjustment, respectively. 

 

Table 3. Example Datasets for the Shuffle Procedure  

Variables Weather generator 
Average  Standard deviation 

Slope Intercept R2 RMSE  Slope Intercept R2 RMSE 

P 

SSWG 0.9961 0 0.9891 0.2681  1.0156 0 0.9833 0.5066 

TSWG 0.9946 0 0.9890 0.2690  1.0163 0 0.9833 0.5067 

Wilks 0.9896 0 0.9988 0.0947  0.9866 0 0.9973 0.2166 

Tmax 

SSWG 0.9999 0 0.9999 0.0827  1.0018 0 0.9921 0.0544 

TSWG 0.9992 0 0.9999 0.0815  1.0098 0 0.9917 0.0566 

Wilks 0.9955 0 0.9998 0.1232  0.9911 0 0.9936 0.0508 

Tmin 

SSWG 1.0003 0 0.9999 0.0651  0.9985 0 0.9933 0.0446 

TSWG 1.0005 0 0.9999 0.0649  1.0035 0 0.9920 0.0490 

Wilks 0.9992 0 0.9999 0.0822  0.9948 0 0.9949 0.0392 

Note: Desired correlation coefficient is 0.605. X is the SSWG-generated daily precipitation for stations G1 and G2. The description of the other 

variables can be found in Section 2.2. SSWG refers to single-site weather generator; TSWG refers to two-stage weather generator; Wilks refers t 

to multisite chain-dependent process proposed by Wilks (1999). 

 

weather data match the observations well. The sharp differences 

indicate that the TSWG performs well when incorporating multi-

site correlations in large catchments. In addition, the perfor- 

mance of the TSWG is similar to or better than that of the chain- 

dependent model. 

3.2.2. Precipitation Occurrence 

The precipitation occurrence structure is perturbed in the 

second stage; however, the serial lag-1 correlation is reconstruct- 

ed well (Figure 4), which implies that the TSWG performs sat- 

isfactorily in simulating the temporal dependence between  
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Figure 5. Averages and standard deviations of the observed watershed-averaged versus SSWG-generated, Wilks-generated, and 

TSWG-generated daily precipitation and temperature.  
 

Table 4. Statistical Parameters of the Bbserved and Simulated Streamflows 

 Statistics OBS SSWG TSWG Wilks 

Annual streamflow 

Average, mm 39.3 39.5 38.3 40.2 

STD, mm  13.9 6.9 14.8 12.2 

Maxima, mm 76.4 55.0 82.0 75.9 

Minima, mm 20.2 24.6 13.1 14.9 

Monthly streamflow 

Average, mm 3.28 3.29 3.19 3.35 

STD, mm  4.10 2.98 3.75 3.80 

Maxima, mm 28.02 15.54 22.76 25.40 

Minima, mm 0.02 0.04 0.04 0.04 

Note: OBS refers to observation; SSWG refers to single-site weather generator; TSWG refers to two-stage weather generator; Wilks refers to 

multisite chain-dependent process proposed by Wilks (1999). 

 

different dry and/or wet events. To evaluate further the capa- 

bility of the TSWG to reproduce the characteristics of precipi- 

tation occurrence, the multisite correlation of occurrence, joint 

probability, and continuity ratios are compared with the observa- 

tions. As shown in Figure 6, the multisite correlation of precipi- 

tation occurrence is simulated well, and better than by the chain-

dependent model. The above results suggest that the shuffle pro- 

cedure can effectively reconstruct the simultaneous occurrences 

of precipitation within a large watershed. 

The joint probabilities that station pairs are both dry or both 

wet on a given day are compared between the observed and 

SSWG-generated or TSWG-generated values for all months. 

Obviously, the SSWG cannot reproduce the observed joint pro- 

babilities because multisite correlation is not taken into ac- 

count (Figures 7(a) and 7(d)). However, the shuffled SSWG- 

generated data reconstruct the joint probabilities almost per- 

fectly (Figures 7(c) and 7(f)), similar to those from the chain- 

dependent model (Figures 7(b) and 7(e)), suggesting that the 

spatiotemporal coherence is reconstructed well by the TSWG. 

Continuity ratios are used to quantify the links between 

precipitation occurrence and amount. For each station pair, 

continuity ratio is the ratio of the precipitation mean at station 

k depending on whether station l is wet or dry. The ratio will 

be small for highly correlated stations (where there is a link 

between occurrences and amounts), and large for stations that 

are not correlated (no link between occurrences and amounts). 

As the occurrence and amount processes are generated inde- 

pendently at each station by the SSWG, the continuity ratios 

are close to one for all station pairs (Figure 8(a)). However, the 

more widely separated station pairs of the continuity ratios of 

the TSWG-generated precipitation indicated an effective re- 

production of the dependences between the occurrence and the 

amount processes (Figure 8(c)). The continuity ratios for the 

TSWG are better than for the untapered chain-dependent model 
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(Figure 8(b)). Although they are similar to the TSWG and the 

tapered chain-dependent model (not used in this study), the 

precipitation from the tapered chain-dependent model over- 

estimates streamflow (Li et al., 2017). Therefore, the TSWG is 

considered to outperform the chain-dependent model in repro- 

ducing the link between precipitation occurrence and amount. 
 

 
 

Figure 6. Intersite correlation of daily precipitation occurrence. 

 

3.2.3. Daily Temperature Range 

As daily temperature is generated stochastically by SSWG 

without a range check in this study, the SSWG-generated Tmax 

is smaller than Tmin for some days. The days with a negative dai- 

ly temperature range (Tmax – Tmin < 0) account for 1.7% ~ 4.7% of 

the total data length for the 15 stations. However, no negative dai- 

ly temperature ranges are detected after the shuffle, which indi- 

cates that the TSWG reproduces the intervariable correlation be- 

tween Tmax and Tmin well. 

 

3.2.4. Multisite and Multivariate Correlation 

Although the multisite and multivariate correlations for four 

months are presented in the section of model development (Fig- 

ure 3), the correlations for all months and all stations are present- 

ed in Figure 9 to show the overall performance of the TSWG. Sim- 

ilar to its performance for the four months, the TSWG can satis- 

factorily simulate either the multisite correlation or the multi- 

variate correlation. The performance of the TSWG is better than 

that of the chain-dependent model, especially for the multivar- 

iate correlation, because this is not taken into account by the 

chain-dependent model. 
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Figure 7. Joint probabilities that station pairs are both dry or both wet on a given day between the observed (Xobs) and the generated 

(Xwg) series from (a) and (d) SSWG, (b) and (e) Wilks, or (c) and (f ) TSWG. 
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Figure 8. Observed continuity ratios versus (a) SSWG-generated, (b) Wilks-generated, and (c) TSWG-generated continuity ratios. 
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Figure 9. Observed versus Wilks-generated and TSWG-generated intersite and intervariable correlations. 

 

3.3. Indirect Evaluation by Hydrological Modeling 

The mean monthly and annual streamflows from the SSWG, 

chain-dependent model, and the TSWG are very similar to the 

observations (Table 4), which implies that the multisite and multi- 

variate correlations of climate have little effect on the averages 

of streamflow. However, the maxima and standard deviations 

of streamflow are greatly underestimated by the SSWG, while 

those from the chain-dependent model and the TSWG are very 

close to the observations. The above results suggest that the 

TSWG-generated climate can be used satisfactorily for the mod- 

eling of hydrological variability, and that its performance is com- 

parable with that of the untapered chain-dependent model. 

To further validate the performance of the TSWG in the 

modeling of the hydrological regime, the statistics of monthly 

streamflow are presented in Figure 10. Obviously, the chain- 

dependent model and the TSWG perform much better than the 

SSWG in reproducing the standard deviations and the maxima 

and minima of streamflow. Therefore, it is concluded that the 

TSWG is a powerful tool that could be used to provide climate 

inputs for the modeling of hydrological variability. 

4. Summary 

Similar to Wilks (1998, 1999), a semiparametric TSWG, 

originally designed for multisite precipitation generation, was 

extended in this study to incorporate daily maximum and mini- 



Z. Li et al. / Journal of Environmental Informatics 35(2) 148-159 (2020) 

 

157 

 

(a) Average

M
o

n
th

ly
 s

tr
e

a
m

fl
o

w
, 

m
m

0

2

4

6

8

10

(b) Standard deviation

0

1

2

3

4

5

6

7

(c) Maxima

Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct NovDec

0

5

10

15

20

25

30

(d) Minima

Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

1

2

3

4

5

6

OBS 
SSWG 
Wilks 
TSWG 

 
 

Figure 10. Averages, standard deviations, maxima and minima of observed, SSWG-generated, Wilks-generated, and TSWG- 

generated monthly streamflow. 

 

mum temperatures. The TSWG generates single-site and single- 

variable data in the first stage, and it then reconstructs the multi- 

site and multivariate correlations in the second stage. The exten- 

sion of the TSWG is straightforward and involves using a larger 

data matrix in the first stage and then adjusting the input corre- 

lation matrix for different pairs of variables in the second stage. 

Although the matrix size is larger than that in the previous multi- 

site version, the model efficiency is unaffected according to a  

comparison of the running times. 

By extending a single-site chain-dependent process into a 

multisite model, the TSWG and the multisite chain-dependent 

model (Wilks, 1999) are very similar in some respects. For the 

step of weather generation, the mixed exponential distribution 

is used in the chain-dependent model to obtain better multisite 

correlation of precipitation through alternately choosing one of 

the two mixed exponential scale parameters. In this study, the 

TSWG is applicable to any probability distribution because the 

correlation reconstruction does not depend on the method for pre- 

cipitation simulation. Therefore, either a parametric method such 

as the Richardson-type approach (Richardson, 1981), the semi- 

empirical method used in LARS-WG (Semenov and Barrow, 

1997), or the circulation-based method used in SDSM (Wilby 

et al., 2002) could be used for the weather generation of the 

TSWG. This advantage presents more options for precipitation 

and/or temperature simulation in weather generation. For exam- 

ple, the skewed normal distribution used in this study is found to 

be the most appropriate model for the simulation of precipita- 

tion amount on the Loess Plateau of China (Li et al., 2014). 

For the step of correlation construction, the multisite chain- 

dependent model recorrelates the random numbers through de- 

veloping empirical curves for all station pairs, each precipita- 

tion process or variable, and each month. Using a distribution- 

free method, the TSWG simultaneously reconstructs the multi- 

site and multivariate correlations through one shuffle for each 

month, but for all sites and all variables despite their probabil- 

ity distributions. The TSWG outperforms the chain-dependent 

model for reconstruction of the intervariable correlation because 

the latter method does not consider this aspect. Although it ap- 

pears that the multivariate correlation has little impact on hy- 

drological modeling in the Jing River catchment, it is of great 

importance for some other applications. In particular, the corre- 

lation between precipitation and temperature greatly influences 

the snowmelt runoff in cold regions, which has been detected 

in our previous study for two catchments in Canada (Li et al., 

2013). Similarly, the intervariable correlation between precipi- 

tation and evapotranspiration derived from temperature is essen- 

tial to calculate irrigation requirements. As a postprocessing 

method, the TSWG affects the occurrence structure, which is 

an inherent weakness of the post- processing method (Wilks, 

1998; Clark et al., 2004; Bárdossy and Pegram, 2012). How- 
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ever, the occurrence adjustment according to the control sta- 

tion from the SSWG effectively recovers the related statistics 

of the observations (Figures 6 ~ 8). The indirect evaluation 

showed that the TSWG-generated climate is acceptable for the 

simulation of hydrological varia- bility, at least on monthly and 

annual scales. Therefore, the TSWG is considered a useful tool 

for multisite and multivariate weather generation.  
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