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ABSTRACT. Due to its versatility, the Soil and Water Assessment Tool (SWAT) has been widely applied to investigate the effects of 

management activities and climate change on water availability and quality. However, the use of high spatial resolution data and the 

advantages of SWAT itself have significantly increased the input/output (I/O) demand and thus the runtime of modeling routines that 

require a large number of iterative simulations. In this study, we proposed a generic scheme to reduce the SWAT runtime by caching the 

model inputs using the in-memory NoSQL database Redis. Then the SWAT source codes (rev 488) was modified according to this propo-

sed scheme to develop the MA-SWAT (memory accelerated SWAT) model by incorporating a new subroutine known as Fortran_calls_c 

to retrieve the cached inputs. We then evaluated MA-SWAT with four synthetic hydrological models and five different parallel schemes 

in a quad-core commodity laptop. The test results showed that when applied with a parallel simulation program, MA-SWAT could achieve 

a speedup by a factor of 8.4 ~ 10.9 depending on model complexity. Compared with the original SWAT, MA-SWAT significantly impro-

ved the computation speed, indicating that the proposed scheme is a desirable method for solving high computational demand problems 

such as calibration, sensitivity and uncertainty analysis. Moreover, the proposed concept of linking the SWAT model with Redis via the 

minimalistic C client driver of Redis is a generic method, and it is possible to apply this method to other Fortran-implemented environ-

mental model to alleviate I/O demands. 
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1. Introduction 

Distributed hydrological and water quality models have 

played important roles in various fields, such as modeling wa-

ter availability and quality, plant growth, evaluating effects of 

watershed management options, and land use and climate chan-

ge impacts (Gassman et al., 2007; Chen et al., 2013; Boluwade 

and Madramootoo, 2015; Shen et al., 2015; Hu et al., 2018; 

Xiao et al., 2015). However, the increasing precision requests 

on spatial resolutions and the evolution of distributed hydro-

logical models themselves have largely increased the computa-

tional time of these models, especially for large spatial and tem-

poral scales. Moreover, due to a large number of immeasurable 

parameters (due in turn to measurement limitations and scaling 

issues) and various sources of uncertainty, these models require 

careful calibration and uncertainty analysis before they can be 

used to understand and investigate the underlying system. Un-

fortunately, these processes usually require a large number of 

model simulations and thus require a prohibitively long com-  
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putational time. Therefore, the calibration and uncertainty anal- 

ysis may become increasingly labor-intensive and time-consu-

ming tasks for model practitioners and may hamper the ability 

of rapid and proper modelling (Humphrey et al., 2012; Rouho-

lahnejad et al., 2012; Joseph and Guillaume, 2013). For exam-

ple, as noted by Joseph and Guillaume (2013), the ability to use 

advanced approaches such as the Bayesian Markov chain Mon-

te Carlo (MCMC) framework is hindered in computationally 

intensive models such as the Soil and Water Assessment Tool 

(SWAT). 

Driven by study and policy needs, over the past few deca-

des, environment modelers have devised many methods or te-

chnologies to reduce computation time in large-scale socio-

environmental modeling (Bryan, 2013, Liu et al., 2013, Liu et 

al., 2014; Hu et al., 2015). Taking the SWAT model (i.e., a con-

tinuous, distributed-parameter, long-term and widely applied 

watershed model) as an example, many efforts to reduce com-

putation time for SWAT or common modeling practices such as 

calibration, uncertainty and sensitivity analysis can be found in 

the literature. These endeavors are roughly divided into three 

categories. The first category (i.e., model reduction) uses a 

lightweight surrogate model such as Synthetic Neural Net-

works (ANNs) and Support Vector Machine (SVM) to approx-

imate the computationally intensive SWAT. For example, 
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Zhang et al. (2009) trained ANNs and an SVM to map the 

response of the objective function into the input parameter 

space of SWAT, and compared with the SWAT model, the two 

learning machines could deliver 20 to 50% time conservation 

for parameter calibration or uncertainty analysis. Recently, Sun 

et al. (2015) developed three meta-models that were trained 

using an existing SWAT model to support real-time decision-

making with respect to activities related to surface water qual-

ity in a coastal watershed in Texas, USA. These studies reveal 

that surrogate-modelling generally increases the overall com-

putational efficiency and model quality compared to when 

these methods are not applied. However, in some cases, when 

computational budget is not very limited, surrogate-modelling 

can be misleading and a hindrance. Besides, these methods can 

be referred to as ‘black-box models’, thus are subject to same 

shortcomings such as lack of flexibility and physical meaning, 

and thus not appropriate for any form of sensitivity analysis. 

The second category applies parallel technologies to either 

simultaneously execute multiple model runs for model routines 

that involve larger numbers of simulations or parallelize the 

computation tasks within one model run. For example, Rouho-

lahnejad et al. (2012) developed a parallel Sequential Uncer-

tainty Fitting II (SUFI2) algorithm and greatly improved the 

efficiency of model calibration. Zhang et al. (2013) developed 

Python-based optimization software for SWAT that can impro-

ve the efficiency of SWAT optimization by approximately 

eight-fold on a Linux server with 16 cores. Wu and Liu (2012) 

developed a parallel parameter estimation program for SWAT 

using the R system. Joseph and Guillaume (2013) also propo-

sed a parallel Differential Evolution Adaptive Metropolis 

(DREAM) algorithm in the R environment to reduce barriers 

to the use of the Markov chain Monte Carlo algorithms. 

However, the scalability of these tools or methods is generally 

poor due to the performance limit of a single machine.  

Recently, the growth of high-performance computing sys-

tems and parallel programming techniques have sparked 

research on efficient solution of complex high-dimensional 

computational problems (and no exception to the SWAT mod-

eling domain) in the forms of cluster, grid and cloud compu-

ting. For example, Whittaker (2004) and Confesor and Whit-

taker (2007) presented a parallel method by combining the 

cluster-based parallel computing technique with the non-dom-

inated sorting genetic algorithm II on a Beowulf cluster con-

sisting of a server and 12 computation nodes to facilitate the 

analysis of uncertainty of SWAT. Zhang et al. (2013) estab-

lished a Python-based parallel computing package PP-SWAT 

by combining Python, MPI for Python and OpenMPI to paral-

lelize A Multi-method Genetically Adaptive Multi-objective 

Optimization Algorithm (AMALGAM), for simultaneously 

addressing multiple objectives in calibration of SWAT. Test 

results on the Evergreen computing cluster showed that PP-

SWAT could achieve a speedup of 45 ~ 109 times depending on 

model complexity. By leveraging the grid computing technol-

ogies and infrastructures, Gorgan et al. (2012) implemented the 

gSWAT application, a practical web solution for environmental 

specialists to use in calibration of extensive hydrological mod-

els and running of scenarios. With the interest in enabling large-

scale environmental and hydrological models to execute and 

deliver results at near real time speeds, Yalew et al. (2013) 

developed generic tools and techniques by parallelizing the 

model structure on the Enabling Grids for E-science projects in 

Europe (EGEE). In recent years, cloud computing has been 

applied to fields with massive computing and data storage 

demands, and SWAT is no exception. For example, Humphrey 

et al. (2012) and Ercan et al. (2014) established a calibration 

system for SWAT based on Microsoft Windows Azure and the 

Dynamically Dimensioned Search method and obtained a sig-

nificant speedup of SWAT calibration. Recently, Zhang et al. 

(2016) implemented a cloud-based Calibration and Uncertainty 

analysis Tool for SWAT (CUT-SWAT) using Hadoop as an 

open source cloud platform and the Generalized Likelihood 

Uncertainty Estimation method. Test results on a computer 

cluster consisting of ten virtual machines built on five com-

modity servers showed that CUT-SWAT could significantly 

accelerate the calibration and uncertainty analysis with a 

speedup range from 21.7 to 26.6 depending on model complex-

ity. These studies take better advantage of computational power 

of modern computational facilities, in the form of parallel, grid, 

cluster and cloud computing, and therefore largely increase the 

computational efficiency. Nevertheless, increasing the proces-

sor or thread count beyond a certain threshold does not neces-

sarily improve efficiency, because intensified resource compe-

tition may result in an I/O bottleneck. 

The third category optimizes the model structure and/or its 

associated programs to reduce/eliminate barriers in application 

of the SWAT model. For example, Rouholahnejad et al. (2012) 

modified SWAT-edit.exe to allow it to cache a number of input 

files on the system’s RAM and thus alleviated the I/O demands 

during model calibration and/or uncertainty analysis proce-

dures. Yen et al. (2014) developed the Consolidated SWAT (C-

SWAT) by consolidating 13 groups of SWAT input files from 

the sub-basin and Hydrologic Response Unit (HRU) levels into 

a single file for each category to enhance the computational 

speed of the SWAT model. Ki et al. (2015) identified the 

slowest routines in SWAT and later modified these routines 

using the Open Multiple Processing library to develop a new 

version of original SWAT (namely, iOMP-SWAT). The test 

results on an 8-core shared memory system showed a universal 

speedup ratio of 2.3. It is noted that the methods between the 

second and third categories do not need to be mutually exclu-

sive, and in fact, they are usually applied together to solve high-

dimension computing problems in modeling routines (e.g., 

Rouholahnejad et al. (2012), Yen et al. (2014) and Ki et al. 

(2015)). While these methods are effective solutions to reduce 

conflicts of the computational resources by alleviating the I/O 

demands, they usually require refactoring the original model. 

In addition, these methods usually dedicate to solve the inten-

sive computational issues of certain specific model. 

In this study, we introduced a generic scheme (belonging 

to the third category) to reduce the runtime of large-scale envi-

ronmental models in general, and SWAT models in particular, 

by caching the model inputs with the in-memory NoSQL data-

base Redis. To the best of our knowledge, this scheme is the 

first attempt to reduce the runtime of Fortran-based, I/O inten- 
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sive environmental models by using an in-memory NoSQL 

database. Specifically, the goal of this study is achieved by 

catching model input in a NoSQL database and revising the 

model input subroutines, such as the hruallo, readmgt, readhru 

and readchm, to read in input from Redis. This study distinct 

from and enhances previous studies in the following aspects: 

first, the proposed method provides an new way to improve 

model computational performance by using an in-memory 

NoSQL database; second, it can not only enhance the compu-

ting efficiency for an individual model run, but also support the 

acceleration of modeling routines with large number of model 

runs; third, it can be even useful where model simulations were 

parallel executed, as it can alleviate the conflict of I/O demands 

which usually becomes more serious when parallel executed; 

fourth, the proposed concept of linking the Fotran with Redis 

is a generic method and it may have a potential to apply this 

method to other Fortran-based environmental model with high 

I/O demands. As demonstrated with the SWAT model, we mod-

ified the SWAT source codes (rev 488) according to this propo-

sed scheme to develop the MA-SWAT model. Specifically, 

modifications to the original SWAT included the following: a) 

incorporation of a new subroutine known as Fortran_calls_c to 

connect, disconnect and retrieve data to/from Redis server; b) 

initiation and release of a connection to/from Redis server at 

the beginning and ending respectively of the entry subroutine 

of the SWAT model; c) abandonment of the open and close 

operations of the HRU level files in subroutines such as hruallo, 

readmgt, readhru, readchm, etc.; d) replacement of the read 

operations in subroutines such as hruallo, readmgt, readhru, 

readchm, etc., which read in parameter values from external 

files to internal files. Finally, we evaluated MA-SWAT with 

four synthetic hydrological models and five different parallel 

schemes in a quad-core commodity laptop. 

2. Materials and Methods 

2.1. Soil and Water Assessment Tool (SWAT) 

The Soil and Water Assessment Tool (Arnold and Fohrer 

2005, Arnold et al. 1998) is a semi-distributed, continuous, 

watershed-scale hydrological model initially developed by the 

Agricultural Research Service of the United States Department 

of Agriculture (USDA-ARS). This tool was developed to pre-

dict the impact of watershed management practices on water, 

sediment, nutrient, pesticide, and fecal bacteria yields in the 

agricultural landscapes of North America. Due to its open-

access, distributed and physically based nature, SWAT was 

adapted and applied to different landscapes and diverse land 

uses throughout the world. To date, over two thousand aca-

demic papers on SWAT have been found in the peer-reviewed 

literature (Center for Agricultural and Rural Development 

(CARD) 2015). 

As a semi-distributed watershed model, SWAT first subdi-

vides a watershed into sub-basins and further delineates Hydro-

logic Response Units (HRUs), which are unique combinations 

of soil, land cover and slope range representing the smallest 

unit of SWAT for each sub-basin. Each concept or logical com-

ponent, including the basin, sub-basins, reaches, and HRUs, 

uses several text-based files to store their specific information. 

For example, files such as *.hru, *.mgt, *.sep, *.sol, *.chm, 

*.gw and *.ops are attributed to HRUs, and files such as *.pnd, 

*.sub, *.rte, *.swq, *.wgn and *.wus are attributed to the sec- 

ond level of units or the sub-basins. Although these separate 

text-based inputs offer merits such as ease of accessibility and 

high portability, they are not optimal for model simulations. For 

example, the HRU files (including *.hru, *.chm, *.mgt, *.sol, 

and *.gw), which are the largest proportion of the model inputs, 

are accessed twice during a model simulation (e.g., the *.hru 

files are read in subroutines hruallo and readhru in source files 

hruallo.f and readhru.f, respectively; see Figure 1). In addition, 

SWAT reads parameters from these files sequentially, which 

means that to obtain a certain parameter, the SWAT model 

might have to read in extra parameters locating in front of the 

desired parameter (see, e.g., lines 110 ~ 112 in subroutine hruallo 

in source file hruallo.f). No problems occur when performing 

small SWAT watershed model, but if executing a larger water- 

shed model delineated at a finer resolution, the consecutive 

process of opening-reading-closing of the model input files 

consumes large amounts of time and computer resources.  

 

 
 

Figure 1. Process diagram of SWAT for reading in model 

inputs. 

 

Moreover, common modeling routines such as model cal-

ibration, sensitivity and uncertainty analysis (simply referred to 

as calibration hereafter) usually require large numbers of itera-

tive model simulations. Additionally, in each simulation, a pro-

cess exists for updating the model parameters (shadowed com-

ponents in Figure 2). This process can be I/O (input/output) in-

tensive depending on the updated parameter type and param-

eterization strategy (i.e., percentage change, added, and repla-

cement). For example, if the HRU-level parameters are incor-

porated into the calibration process, additional model input 

files must be edited, and if the percentage change and/or added 

approaches are used to update the model parameters, the para-

meter editor process must refer to a backup of the model files 

as well, thus increasing access to the hard disk.  

 

2.2. Redis 

Redis is one of the most popular in-memory NoSQL 

databases used as cache and message broker. It is built to pro-

vide the highest throughput (millions of operations/second) at  
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Figure 2. Common processes in parameter optimization, uncer-tainty, and sensitivity analysis and BMP identification for the 

SWAT model 

 

the lowest latencies (< 1 ms), with the least system resources. 

As a result, this database can achieve much higher throughput 

than traditional solutions such as the relational database and 

document-oriented systems. Redis is notably fast, and thus it is 

perfectly suited for I/O intensive applications. Similar to rela-

tional databases, Redis uses the server-client system architec-

ture. The server is a key-value storage component used to store, 

retrieve and manage associative arrays, a data structure com-

monly known as a dictionary or hash. Dictionaries contain a 

collection of records. These records are stored and retrieved 

using a key that uniquely identifies the record and is used to 

quickly find the data within the database. Since version 2.6, 

Redis includes server-side scripting with the Lua programming 

language, which acts like the role of stored procedures in rela-

tional database. This feature allows developers to write more 

advanced queries that are executed within Redis and are thus 

more effective. Redis supports several clients or drivers that are 

written in different program languages for different applica-

tions to connect and send commands to the server. In this study, 

Hiredis, a minimalistic C client library, is used to link SWAT 

with Redis. 

 

2.3. Loading SWAT Inputs 

In this study, to reduce disk I/O operations, the in-memory 

key-value store Redis is used to store SWAT inputs instead of 

the traditional document-oriented system. In the original 

SWAT, input files are read into the SWAT program in a line-by-

line manner, and accordingly, SWAT inputs are stored in Redis 

on a line basis. In other words, each line of the SWAT input file 

is attempted as a record in Redis, which is identified by a 

unique combination of file name and line number (in fact, we 

used the colon character as a separator between portions of 

keys). Parameters that are involved in calibration, sensitivity or 

uncertainty analysis are attempted in a different manner. After 

the parameter sets are drawn by the sample algorithm, each 

independent parameter is loaded into Redis as a record and is 

defined by a unique combination of file name, line number and 

simulation number/sample number (colons were used to link 

adjacent portions of keys). For ease of references, the keys of 

regular parameters and those involved in calibration are deno-

ted as S1 and S2, respectively. 

The values of categories S1 are derived from the SWAT 

input files. However, the comment of each parameter is not 

included when loaded to the Redis server to minimize the uti-

lized memory. The values of categories S2 are determined 

based on the parameter change strategies (i.e., percentage 

change, added, and replacement), which is method adopted by 

the iSWAT program (Abbaspour et al., 2007). For example, 

v_CN2.mgt = 72 means a global replacement of the original 

CN2 value in the *.mgt files with 72, and a_CN2.mgt = 1.82 

causes a replacement of the CN2 value in the *.mgt files by a 

value of original CN2 values added by 1.82, etc. It is worth no-

ting that the values of both categories must maintain the same 

format as the original SWAT file except that the comments for 

parameters are discarded. In other words, spaces around the va-

lue and length of value must be exactly that the same as in the 

original SWAT file. 

 

2.4. Development of MA-SWAT 

Redis supplies client drivers in 49 languages (e.g., Action- 

Script, Bash, C, C#, and C++) for client applications that com- 

municate with the Redis server. However, drivers written in 
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Fortran are not currently available, which makes it impossible 

for SWAT (which was originally programmed in Fortran) to 

connect to the Redis server using a single programming lan-

guage (i.e., Fortran). Fortunately, since Fortran 2003, an offi-

cial standardized mechanism exists for interoperation with C. 

Therefore, it is possible to link SWAT with the Redis server via 

an intermediate component written in C. The schematic dia-

gram illustrated in Figure 3 was proposed. In this scheme, a 

minimalistic C client driver for Redis known as Hiredis was 

incorporated into SWAT using the intrinsic module iso_c_bind-

ing and the bind attribute of the Fortran programming language. 

The iso_c_binding module contains named constants, derived 

types, and module procedures that are useful in mixed language 

situations. The bind attribute allows variables to interoperate 

with C and bridges the gap in syntax between Fortran and C 

identifiers. Details of the use of these two entities for interop-

erability are beyond the scope of this study. For detailed infor-

mation on the calling mechanism between the Fortran and C 

programming languages, please consult a manual or reference 

book, such as the Fortran 2003 Handbook.  

 

 
 

Figure 3. Sensitivity analysis on important parameters. 

 

The most important modification to the original SWAT in 

development of MA-SWAT includes a new subroutine known 

as Fortran_calls_c (source codes are presented in Appendix A). 

In this subroutine, an interface that describes the C procedures 

was defined to map procedures in Fortran and C. The C proce-

dures (source codes are presented in Appendix B) include con-

nect_to_redis for creating a connection to the Redis server, dis-

connect for disconnecting from the Redis server, retrieve for 

acquiring the model input from the Redis server, and releasere-

ply for releasing the reply object (global variable) that was cre-

ated in the retrieve function. Two wrapper functions were also 

defined in this subroutine to prepare the input arguments and 

interpret the response of the C-implemented retrieve function. 

These wrapping functions eventually invoke the redisCom-

mand function defined in Hiredis to send a command to and 

retrieve the response from the Redis server. In particular, in this 

function, an evalsha command is send to the Redis server, 

which in turn invokes a preloaded Lua script (see Appendix C). 

This Lua script accepts two arguments. The first argument is an 

identifier of a regular parameter, which is a string concatena- 

tion of file name, a colon and line number, and the second ar-

gument is a string consisting of a colon and simulation number. 

This script first checks whether the value of the combination of 

these two arguments (identifier for a certain simulation) exists, 

and if not, it returns the regular value of the desired parameter. 

This approach is beneficial because this script groups two com-

mands into a custom-built cohesive function to reduce the com-

munication overhead. In addition, using this script, MA-SWAT 

does not need to know whether a parameter is involved in the 

calibration processes. In other words, we do not need to write 

codes that treat parameters differently in MA-SWAT whether 

the parameters are involved in calibration processes. 

Other modifications to the original SWAT include the fol-

lowing: (a) initiating and releasing a connection to/from the 

Redis server at the beginning and ending, respectively, of the 

entry subroutine (in the source file of main.f) of the SWAT 

model; (b) abandoning the open and close operations of the 

HRU level files in hruallo, readmgt, readhru, readchm, etc.; and 

(c) changing the read operations in subroutines such as hruallo, 

readmgt, readhru, readchm, etc., which read in parameter val-

ues from external files to internal files (i.e., in-memory charac-

ter variables; code snippets are presented in Appendix D).  

 

2.5. Development Tools and Data Sources 

The MA-SWAT model was developed with Visual Studio 

2013 and Intel(R) Visual Fortran Compiler XE 14. Other tools 

such as the program to load SWAT model files into Redis (load-

ing program), program to create synthetic models (Synthetic 

model creator), and test programs of SWAT and MA-SWAT 

were implement in JAVA language (for the purpose of reusing 

the components that were formerly built in Java in Zhang et al. 

(2015) and Zhang et al. (2016)) with Eclipse. The synthetic 

models (see 3.1 for details of these models) and source codes 

of MA-SWAT and other tools are freely available at GitHub 

(Table 1). 

 

Table 1. Tools and data used to implement and test MA-SWAT 

Tools and models 
Program 

Languages 
GitHub repositories 

MA-SWAT C and Fortran ~/MASWAT.git 

Redis Fortran driver C and Fortran 
~/redis-Fortran-

driver.git 

Loading program Java ~/Loading-program.git 

Synthetic model creator Java ~/models-and-tools.git 

Test program for MA-

SWAT 
Java ~/test-programs.git 

Test program for SWAT Java ~/test-programs.git 

Synthetic models NA ~/models-and-tools.git 

*NA stands for “not applicable”; ~ is the root path of the repositories 

which is https://github.com/djzhang80. 

3. Case Study 

All other hydrological and nutrient components and inter-

actions between components in MA-SWAT model were kept 

unchanged. When feeding with the same inputs, the generated 
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simulation results of MA-SWAT and SWAT should be exactly 

the same. A simple test to verify this assumption was conducted 

by comparing the outputs of MA-SWAT and SWAT with same 

model inputs. As expected, same results are generated. 

Another assumption about this newly developed MA-

SWAT is that MA-SWAT should be particularly efficient when 

used in parallel-implemented calibration, sensitivity or uncer-

tainty analysis algorithms. To validate this assumption, we 

evaluated MA-SWAT and SWAT with 40 test scenarios, i.e., 

combinations of four synthetic hydrological models with five 

different parallel schemes in a commodity laptop, and com-

pared the performance gains of these two models. The hydro-

logical models, evaluated programs, parallel schemes are intro-

duced as follows. 

 

3.1. Hydrological Models 

Four synthetic hydrological models (denoted as Models 1, 

2, 3 and 4), representing different I/O burdens or model com-

plexity, were created based on the hydrological model that is 

shipped with the SWAT-CUP program to evaluate how model 

complexity affects the efficiency of MA-SWAT and SWAT. 

These four synthetic hydrological models have the same sub-

basin numbers, simulation periods and other configurations but 

different HRU numbers. Specifically, each of these models has 

20 sub-basins and is set to run for three years. Each sub-basins 

consist of an equal number of HRUs within one hydrological 

model. The sub-basins in Models 1, 2, 3 and 4 consist of 5, 50, 

100 and 150 HRUs, respectively. 

 

Table 2. Parameters Involved for Testing the Performances of 

SWAT and MA-SWAT 

Parameter 
Changed 

method 
File type Layer 

Adjustable 

range 

CN2 a .mgt NA -5 ~ 5 

OV_N r .hru NA -0.1 ~ 0.1 

CANMX r .hru NA -0.1 ~ 0.1 

ESCO v .hru NA -0.01 ~ 1 

EPCO v .hru NA -0.01 ~ 1 

GW_DELAY r .gw NA -0.1 ~ 0.1 

ALPHA_BF r .gw NA -0.1 ~ 0.1 

GWQMN r .gw NA -0.1 ~ 0.1 

GW_REVAP r .gw NA -0.1 ~ 0.1 

REVAPMN r .gw NA -0.1 ~ 0.1 

RCHRG_DP r .gw NA -0.1 ~ 0.1 

SOL_Z v .sol 1 0 ~ 3500 

SOL_AWC v .sol 1 0 ~ 1 

SOL_K v .sol 1 0 ~ 2000 

* Characters ‘a’, ‘r’ and ‘v’ denote added, percentage change, and repla-
cement parameter changed methods, respectively, and ‘NA’ denotes that 

this attribute is not applicable to the associated parameter. 

 

The number, type and change approach of the parameters 

used in model calibration, sensitivity and uncertainty analysis 

can affect how many model input files must be accessed and 

edited. In this case study, the parameters listed in Table 2 were 

selected as the calibrated parameters. All selected parameters 

are HRU-level parameters and thus cover most model input 

files. Additionally, for most of the parameters, we adopted the 

percentage change and added approaches, which double the 

accessed number of model input files in which these parameters 

lie. It is noted that the parameters and their value ranges were 

selected to test the efficiency of MA-SWAT and SWAT and not 

to conduct a meaningful calibration. 

 

3.2. Test Programs 

To evaluate and compare the performances of MA-SWAT 

and SWAT, two programs were implemented in Java (for the 

purpose of reusing the components that were formerly built in 

Java in Zhang et al. (2015) and Zhang et al. (2016)) to parallel-

ize simulations of these two models. The schematic diagrams 

of these test programs are illustrated in Figures 2 and 4, respec-

tively. As shown in these diagrams, these test programs are not 

fully functional calibration tools but rather a common subset 

that is involved in parallel calibration, sensitivity and uncer-

tainty analysis algorithms, including parameter sampling, para-

meter editing, and model execution, etc. 

Figure 2 shows the key procedures (within the dashed 

frame) of the test program used to parallelize simulations of the 

SWAT model (hereafter denoted as P1). First, the parameters 

are sampled using a Java parameter sample tool (JLHS) (Zhang 

et al., 2015) that implements the Latin hypercube sample 

(McKay et al., 2000) method. Some threads (the number of 

threads is determined by an argument that is passed to the pro-

gram) are created, and in each of the threads, individual back-

ups of the model inputs are edited according to the assigned 

parameter set via JSWAT-Edit (Zhang et al., 2015), and the 

SWAT model is subsequently executed. In addition to the 

threads for parallel model simulations, another thread (not pre-

sented in Figure 2) is created to gather performance data during 

the processes of the model simulations, including the CPU, 

memory, and time consumption. The test program (key pro-

cesses of this program are presented in the dashed frame in Fig-

ure 4) for the MA-SWAT model (hereafter denoted as P2) is 

slightly different from that of the SWAT model. After the 

parameters are sampled, the model inputs and sampled param-

eters are loaded into Redis in the manner described in Section 

2.3. The model input modification procedure is removed in all 

threads that perform model simulations because MA-SWAT 

can directly retrieve the model inputs from Redis that are spec-

ified for certain simulations. 

 

3.3. Test Environment, Schemes and Measures 

The performances of MA-SWAT and SWAT were tested 

on a laptop with a quad-core Intel Core CPU and 4-GB memory. 

The principal frequency of the CPU is 2.3 GHz. The operating 

system is 64-bit Windows 10. In general, the increase in the 

parallel-executed models causes a proportional increase in the 

I/O burdens of the model calibration procedures for traditional 

calibration tools. To evaluate how the performances are 

affected under different numbers of parallel execution models, 

test scenarios of the four aforementioned hydrological models 
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Figure 4. Common processes in parameter optimization, uncer-tainty, and sensitivity analysis and BMP identification for the MA-

SWAT model. 

 

combined with the different parallel schemes were assessed 

with the test programs P1 and P2. In other words, the four 

hydrological models were run with test programs P1 and P2 on 

1 to 5 parallel threads (not including the one used to gather the 

performance information). Each of the parallel threads per-

formed ten model simulations, and the average values for one 

simulation were reported in this study. Additional information 

on the test environment and schemes can be found in Table 3. 

Besides these scenarios, an additional scenario was added to 

evaluate the proposed modules that could be used to SWAT 

with large simulations. In this scenario, 3,000 simulations were 

parallel executed with the best speedup settings identified by 

aforementioned 40 scenarios (i.e., the best settings for MA-

SWAT to speedup model simulations). 

In addition to the average execution times for a single sim-

ulation and the CPU and RAM usage rates, we also used speed- 

up (Pacheco, 2011), which indicates how much faster a pro- 

gram runs in parallel, to measure and compare the efficiency 

improvement achieved by MA-SWAT and SWAT when applied 

to parallelize simulations for modeling routines such as calibra-

tion, uncertainty analysis, etc. This measure is defined as fol-

lows: 

 

Speedupp,m = AT1,0 / ATp,m                           (1) 

 

where the subscript p is the number of parallel threads, m is the 

symbol of model (o for SWAT, d for MA-SWAT), AT1,o is the 

average time taken by the test program P1 to run with one 

thread, and ATp,m represents the average execution time for 

SWAT or MA-SWAT with p threads. 

4. Results and Discussion 

4.1. Performance Comparison and Analysis 

The average time consumed by one simulation (AT) of the 

four synthetic hydrological models using MA-SWAT and 

SWAT is plotted against the number of parallel threads (not 

including the monitor thread used to collect performance infor- 

mation) in Figure 5a ~ d. While running with two or more paral- 

lel threads (hereafter referred to as parallel mode), the AT val- 

ues were significantly reduced for both the MA-SWAT and 

SWAT. Overall, the AT of MA-SWAT was much smaller than 

that of SWAT, particularly when only one thread was used 

(hereafter referred to as sequential mode). For the MA-SWAT 

model, the AT decreased gradually up to four parallel threads 

and slightly increased at five parallel threads for all synthetic 

hydrological models. For the SWAT model, the AT changed 

following the trend of the MA-SWAT model for Models 1 and 

2, but the reduction of AT ceased at three parallel threads for 

Models 3 and 4. The early suspension of the time reduction of 

the SWAT model (compared with that of MA-SWAT) for Mod- 

el 3 and 4 is mostly due to I/O saturation. The large number of 

HRUs of Models 3 and 4 together with the relatively high num- 

ber of parallel simulations causes a large number of simul- 

taneous accesses of the hard disk when the simulations are par- 

allelized. 

Figure 5e ~ h shows the speedups achieved by parallelized 

simulations of MA-SWAT and SWAT. The speedups achieved 

by the MA-SWAT for Models 1, 2, 3 and 4 range from 2.4 to 

3.4 when run in sequential mode. Better performances were 

achieved by further parallelizing the model simulations, espe-  



D. J. Zhang et al. / Journal of Environmental Informatics 37(2) 142-152 (2021) 

 

149 

 

 

 

 
 

Figure 5. Average execution times versus number of parallel threads (a ~ d) and speedup versus number of parallel threads (e ~ h) 

for the four synthetic hydrological models. 

 

Table 3. Schemes and environment for evaluating the 

performances of SWAT and MA-SWAT 

Model 
Test 

program 

Parallel 

scheme 

Hydrological 

model 
Environment 

SWAT P1 

1 ~ 5 

synchronous 

model 

executions 

Models 1 ~ 4 

Hardware: 

CPU: Quad-core 

Intel Core 2.3 

GHz 

RAM: 4 GB 

Software: 

OS: 64-bit 

Windows 10 

Java 

Development Kit 

7 

Redis 2.6 (for 

MA-SWAT only) 

MA-

SWAT 
P2 

1 ~ 5 

synchronous 

model 

executions 

Models 1 ~ 4 

 

cially for MA-SWAT. For example, the best speedups achieved 

by MA-SWAT for Models 1 ~ 4 were 9.7, 8.4, 10.9 and 9.9, 

whereas the best speedups for these models archived by SWAT 

were 3.6, 2.4, 2.9 and 2.5, respectively. The additional perfor-

mance gains for MA-SWAT compared with the original SWAT 

can be attributed to the ability to retrieve model inputs from the 

in-memory key-value database and elimination of the parame-

ter editing procedure from the calibration processes. As obser-

ved in Figure 5g ~ h, the SWAT speedups stopped increasing at 

three threads (lower than the CPU cores). The phenomenon 

could be due to the disk limitation caused by simultaneous 

model inputs access. The best speedups achieved by SWAT for 

Models 1 and 2 and MA-SWAT for all four models ceased to 

increase at four parallel threads. One possible reason for the 

decrease in speedups beyond 4 threads is the limit of the avail-

able computational resources (i.e., the available cores of the 

CPU) because in these tests, the conflicting demands for disk 

I/O operations were relatively lower and thus the CPU (with 4 

available physical cores) became the bottleneck of the system 

as the number of parallel threads exceeded the number of avail-

able CPU cores.  

As mentioned previously, we also used a lightweight 

thread to collect the CPU and memory usage information while 

conducting these tests. The average memory usage is plotted 

against the number of parallel threads in Figure 6a ~ d. The 

memory usage rate increased with the increasing complexity of 

the tested hydrological models, and in most cases, the memory 

usage rate increased with the number of parallel threads for 

both MA-SWAT and SWAT. However, the memory usage rates 

of MA-SWAT were generally less than those of SWAT, which 

might be attributed to the absence of reading and editing large 

numbers of HRU level files in MA-SWAT while conducting 

these tests. Certain fluctuations were noted in the memory 

usage rates for both MA-SWAT and SWAT, which might be 

caused by the interferences of the monitor thread and other sys-

tem processes or a relative larger sample interval of the monitor 

thread (and thus less precision). Figure 6e ~ h shows the average 

CPU usage rates of MA-SWAT and SWAT versus the number 

of parallel threads. As expected, the average CPU usage rates 

increased with the number of parallel threads for both MA-

SWAT and SWAT. It is interesting to note that the average CPU 

usage rates of MA-SWAT gradually surpassed those of SWAT 

with the increasing complexity of the hydrological models. 

This phenomenon was mostly caused by the I/O overstress of 

SWAT, which made the CPU unable to run at full capacity, 

whereas MA-SWAT was less affected by the disk I/O and thus 

enabled the CPU to run more efficiently. 

To further evaluate the acceleration support of modeling 

routines with large number of iterative runs, we added another 

test scenario. In this scenario, 3,000 simulations of Model 3 

(with 20 sub-basins and 2,000 HRUs) were performed by MA-  
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Figure 6. Memory consumption rates versus number of parallel threads (a ~ d) and CPU consumption rates versus number of 

parallel threads (e ~ h) for the four synthetic hydrological models. 

 

SWAT and SWAT with four parallel threads (best speedup was 

achieved by MA-SWAT with these settings). The total execu-

tion time to perform such large number of simulations of the 

Model 3 could sum up to 3.1 days if sequentially executed. The 

test results of the scenario showed that the total execution times 

of MA-SWAT and SWAT were close to 7 and 26.6 hours, res-

pectively. Results of this scenario indicate that MA-SWAT can 

not only enhance the computing efficiency for an individual 

model run, but also support the acceleration of modeling rou-

tines with large number of model runs. In addition, MA-SWAT 

can be even useful where model simulations were parallel exe-

cuted, as MA-SWAT can alleviate the conflict of I/O demands. 

 

4.2. Advantages and Disadvantages 

MA-SWAT is the first attempt to reduce the runtime of a 

highly computational-intense SWAT model using an in-memo-

ry NoSQL database. Certain tools exist that share model inputs 

in memory during the SWAT model calibration. For example, 

Green and Griensven (2008) incorporated the Shuffled Com-

plex Evolution (SCE) algorithm (Duan et al. 1992) into SWAT 

to build an auto-calibration procedure in which sequential runs 

of SWAT can share the same cached model inputs, and Rouho-

lahnejad et al. (2012) modified the SWAT-edit.exe by caching 

a number of input files on the system’s RAM, and thus all 

relative changes in the parameters can be made with respect to 

the static cached inputs. While sharing the same concept for 

reducing I/O demands of SWAT model by caching the model 

inputs in system RAM, MA-SWAT uses an external in-memory 

NoSQL database (Redis) to manage these model inputs, which 

differentiates it from these methods and thus offers certain 

advantages over other methods. First, MA-SWAT cached the 

model inputs in an external tool, which means the model inputs 

can be shared among parallel model simulations, i.e., iterative 

MA-SWAT simulations can be parallelized within one machine 

or in a distributed environment consists of many machines 

(although not tested in this study). Second, users do not have to 

consider issues such as whether sufficient system RAM exists 

to fit all model inputs because Redis can store the data to disk 

using a mechanism know as snapshotting.  

Additionally, as demonstrated by the results of the MA-

SWAT test program, MA-SWAT can be easily applied in other 

situations with large model simulation requirements, such as 

global sensitivity analysis and optimization of watershed man-

agement practices and can significantly reduce the computa-

tional times of these processes. Moreover, the proposed con-

cept of linking the SWAT model with Redis via a minimalistic 

C client driver for Redis via the intrinsic module iso_c_binding 

and the bind attribute of the Fortran programming language is 

a generic method. Therefore, it is possible to apply this method 

to other Fortran-based environmental model with high I/O 

demands. The source codes of the newly developed subroutine 

Fortran_calls_c, which includes functions to connect, discon-

nect and retrieve data to/from Redis server, can be reused with 

minimal modifications (e.g., changing the IP address of the 

Redis server) when incorporating this method into other For-

tran-based environmental models. To boost and ease the usage 

of this method, an open-access static library (Redis Fortran dri-

ver; Table 2) was implemented for Fortran-based environment 

models/applications to link with Redis. To work with Redis, 

programmers or users just need to include the *.lib and *.mod 

files to their projects, extend their codes to work with this 

library, and recompile their projects. The Redis Fortran driver 

is available at a GitHub (https://github.com) repository hosts at 

https://github.com/djzhang80/redis-fortran-driver. 

The computational time of SWAT can be affected by many 

factors. These factors include the spatial-resolution, spatial-
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scale, model building-up settings (i.e., the threshold values of 

sub-basin and HRU), temporal-resolution, length of simulation, 

and model version/structure as well as the execution environ-

ment. The first three are the major factors that determine the 

number of sub-basins and HRUs that will be generated when 

building up a hydrological model, and therefore determine the 

I/O demands of studied hydrological model. The following 

three factors usually determine the amount of computations and 

thus the execution model time. The model execution environ-

ment can also affect the required model run time, when the 

computational resources (such as CPU and RAM) are inade-

quate. Because MA-SWAT focuses on reducing the I/O de-

mands of SWAT, it is efficient in solving high-intensive compu-

tational problems associated with the first three factors. Nev-

ertheless, MA-SWAT cannot solve problems associated with 

the remained factors as it does not extend to other computation-

intensive portions of the SWAT model. For example, increasing 

the simulation length can dilute the performance gains of MA-

SWAT. 

5. Conclusions and Future Work 

In this study, we proposed a generic scheme designed to 

reduce the run times of environmental models implemented in 

Fortran by caching the model inputs with an in-memory key-

value store, the popular NoSQL database Redis, and incorpo-

rating a new subroutine known as Fortran_calls_c to retrieve 

the cached inputs. Taking SWAT model as an example, we mo-

dified the original SWAT according to the proposed scheme to 

develop the MA-SWAT model. We believe that MA-SWAT is 

particularly efficient for use in parallel-implemented calibra-

tion, sensitivity or uncertainty analysis tools. Therefore, we 

evaluated MA-SWAT with four synthetic hydrological models 

and five different parallel schemes in a commodity laptop. The 

results revealed that MA-SWAT can significantly improve the 

performance compared with the original SWAT if running at 

the same configurations, and proved that the proposed scheme 

is a desirable method for solving high computational demand 

problems in hydrological model calibration, sensitivity and un-

certainty analysis.  

As a proof-of-concept prototype tool, MA-SWAT is cur-

rently under restructuring to cache the HRU-level files with an 

in-memory NoSQL database. Future possible studies include 

the following: 1) continued improvement of the MA-SWAT 

performance by caching all model inputs to Redis, 2) parallel-

ization of the MA-SWAT simulations in a distributed environ-

ment, and 3) application of the proposed scheme to other envi-

ronmental models such as the Hydrologic Simulation Program-

Fortran model to validate its flexibility and universality. 
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