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ABSTRACT. The vision for sewage treatment plants is being revised and they are no longer considered as pollutant removing facilities 

but rather as water resources recovery facilities (WRRFs). However, the newly adopted bioprocesses in WRRFs are not fully understood 

from the microbiological and kinetic perspectives. Thus, large variations in the outputs of the kinetics-based numerical models are evident. 

In this research, data driven models (DDM) are proposed as a robust alternative towards modelling emerging bioprocesses. Methano- 

trophs are multi-use bacterium that can play key role in revalorizing the biogas in WRRFs, and thus, a Multi-Layer Perceptron Artificial 

Neural Network (ANN) model was developed and optimized to simulate the cultivation of mixed methanotrophic culture considering 

multiple environmental conditions. The influence of the input variables on the outputs was assessed through developing and analyzing 

several different ANN model configurations. The constructed ANN models demonstrate that the indirect and complex relationships 

between the inputs and outputs can be accurately considered prior to the full understanding of the physical or mathematical processes. 

Furthermore, it was found that ANN models can be used to better understand and rank the influence of different input variables (i.e., the 

physical parameters that influence methanotrophs) on the microbial activity. Methanotrophic-based bioprocesses are complex due to the 

interactions between the gaseous, liquid and solid phases. Yet, for the first time, this study successfully utilized DDM to model methano- 

trophic-based bioprocesses. The findings of this research suggest that DDM are a powerful, alternative modeling tool that can be used 

to model emerging bioprocesses towards their implementation in WRRFs. 

 

Keywords: artificial neural network (ANN), data driven models (DDM); kinetics, kinetics-based models (KBM), modelling, 

methanotrophs, upscaling, water resources recovery facilities (WRRFs) 

 

 

 

1. Introduction 

Recently, there has been a focus to reconsider the vision 

for sewage treatment plants (STPs) (McCarty et al., 2011). This 

focus is due to the fact that STPs consume enormous amount 

of energy, typically based on fossil fuels. For instance, in North 

America around 4% of the annual electrical energy consump- 

tion is used for the operation of STPs and this fossil fuel-based 

energy is responsible for emitting 45 million tons of carbon di- 

oxide equivalents, representing 75% of total greenhouse gases 

emissions from STPs (Canadian Biogas Association, 2013; Liao 

et al., 2016; US EPA, 2016). This significant amount of energy 

consumption and greenhouse gas emission is not only of en- 

vironmental concern but also of economic interest (Asztalos 

and Kim, 2017), since it has been suggested that the potential 

energy contained in sewage is nearly 5 times higher than the 

energy consumed during the treatment process (Gu et al., 2017; 

Puyol et al., 2017). Hence, STPs should no longer be consid- 

ered as pollutant removing facilities, but as facilities that cou- 

ple the sewage treatment process with the generation of energy  
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and value-added products, which are known as water resources 

recovery facilities (WRRFs). Therefore, more attention to alter- 

native and novel bioprocesses is needed to support the novel 

WRRFs processes and replace the conventional activated slu- 

dge-based processes (Wan et al., 2016). However, most of the 

suggested novel processes in the literature have not yet been 

fully understood from both the microbiological and kinetic per- 

spectives (Puyol et al., 2017). Consequently, the development 

of reliable models that can describe their microbial activity is a 

crucial milestone towards converting conventional STPs into 

WRRFs.  

Carbon redirection towards anaerobic digestion (AD) is a 

key strategy to consolidate the WRRFs concept (Jimenez et al., 

2015). It is advantageous due to its applicability in relatively 

low temperatures and the production of easily digestible sludge 

(Sancho et al., 2019). AD is a widely adopted technology known 

for its capacity for sludge minimization under low energy re- 

quirements since no aeration is required, whereas, biogas is re- 

leased as the value-added product (Tchobanoglous et al., 2003; 

Chen et al., 2008). Nevertheless, multiple obstacles hinder the 

direct utilization of the produced biogas such as the presence 

of impurities and its low handling and collecting capabilities 

(Ge et al., 2014).  

Methane oxidizing bacteria (methanotrophs) have the ex- 
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clusive ability to directly utilize the AD driven biogas and re- 

valorize it into higher value-added products like single cell pro- 

teins, methanol, and biopolymers (Fergala et al., 2018a). Un- 

like the other types, type I methanotrophs have higher growth 

rates and energy efficiency, which makes it more attractive for 

industrial applications (AlSayed et al., 2018a). Thus, the de- 

velopment of a model that can describe type I methanotrophs 

microbial activity would be beneficial as a vital step to be up 

scaled and adopted in WRRFs. Unfortunately, type I methan- 

otrophs formed cultures are more sensitive than the other types 

of methanotrophic bacteria to the fluctuation of the surround- 

ing environmental conditions. The factors that can affect the 

methanotrophic bacteria include nitrogen concentration, copper 

concentration, substrate concentration, and biomass density (Al- 

Sayed et al., 2018a). Thus, the effects of these factors on type I 

methanotrophs activity should be considered to appropriately 

predict and design any methanotrophic based numerical mod- 

els and bioreactors.  

 

1.1. Background of Kinetics-Based Models 

Generally speaking, numerical models may be divided in- 

to two categories: (i) physical or physics-based models, which 

depend on the full understanding of the process behavior and 

principles (Soliman and Eldyasti, 2017); and (ii) data driven 

models (DDM) which rely on empirical mathematical equa- 

tions assessed from the analysis of input and output (or target) 

parameters rather than the explicit underlying physical proc- 

esses (Solomatine and Ostfeld, 2008). Kinetics-based models 

(KBM), a type of physical based models, have been extensively 

studied to describe the methanotrophic microbial activity (Del- 

homénie et al., 2008; Rostkowski et al., 2013; Ménard et al., 

2014; Ordaz et al., 2014). In order to develop any microbial 

KBM, five coefficients must be experimentally attained: maxi- 

mum specific growth rate (µmax, day-1), Monod half saturation 

constant (Ks, mgsubstrate/L), maximum specific substrate (meth- 

ane) utilization rate (qmax, mgsubstrate.mgcells
-1.day-1), the true 

growth yield (Ytrue, mgcells/mgsubstrate) and the endogenous decay 

rate (Kd, day-1). Thereafter, the specific growth rate (µ, day-1), 

the specific methane utilization rate (q, mgsubstrate.mgcells
-1.day-1), 

the actual substrate uptake rate (MURactual, mgsubstrate/day), and 

the apparent yield (Yapp., mgcells/mgsubstrate) can be calculated using 

Equations 1 to 4 (Rittmann and McCarty, 2012). The calculated 

parameters are commonly used to describe any microbiological 

system performance: 
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Unfortunately, the reported values for the KBM coeffi- 

cients have a very wide range (Rostkowski et al., 2013) lead- 

ing to highly uncertain model predictions. The reported µmax 

varies from 0.43 to 8.16 day-1 which results in notably differ- 

ent prediction of µ. As a result, the highest predicted value can 

be 19 times higher than the lowest predicted value (Heijnen and 

Roels, 1981; Boiesen et al., 1993; Delhoménie et al., 2008; 

Rostkowski et al., 2013; Rostkowski et al., 2013; Ménard et al., 

2014; Ordaz et al., 2014). Furthermore, Ordaz et al. (2014) has 

recently reported Ks up to 100 times lower than other values 

within the literature, again showing the significant variance in 

the reported values (Delhoménie et al., 2008; Ménard et al., 

2014; Ordaz et al., 2014). Similarly high variability has been 

reported for growth yields: growth yields of 0.585 mgcells/mgCH4 

were obtained using type I methanotrophs pure culture of Me- 

thylococcus capsulatus (Siniscalchi et al., 2015), while a new 

type I methanotrophs isolated from solid state anaerobic di- 

gesters had a growth yie̶ld of 0.19 mgcells/mgCH4 (Sheets et al., 

2016). Most of the reported yields are apparent yield (Yapp.) and 

not the true yield which can be used in bioreactor design para- 

meters. In other words, the calculated yield is expected to vary 

from all the reported values at different conditions. To the best 

of our knowledge, very limited studies have reported the Kd and 

also showed notable differences (Boiesen et al., 1993). Regard- 

ing the qmax, few values were reported within the literature rang- 

ing from 0.076 to 0.367 mgCH4.mgcells
-1.hr-1 (Rostkowski et al., 

2013; López et al., 2014; Ordaz et al., 2014). These studies de- 

monstrate that KBM coefficient values vary widely in the re- 

ported literature, making it difficult to assess the accuracy and 

utility of KBM type models. Figure 1 shows the probability 

density function of the specific growth rate (µ) using the values 

of µmax and Ks as reported in the literature. It illustrates the no- 

table variation in the KBM coefficients which results in a large 

difference in the expected performance and design parameters 

with µ as an example. Additionally, the experimentally deter- 

mined KBM coefficients do not consider the factors that have 

been reported to affect the methanotrophic activity (e.g., the 

biomass density, copper and nitrogen concentrations). As a re- 

sult, a wide range of kinetics have been reported in literature, 

since the experiments conducted to obtain these KBM coeffi- 

cients have not been performed under the same experimental 

conditions (Rostkowski et al., 2013; Ordaz et al., 2014). Even 

though multiple correction equations have been developed to 

consider some of the factors (e.g., the temperature and the sub- 

strate concentration), most of the other factors that influence 

methanotrophic activity have not been successfully modelled 

yet. 

 

1.2. Data-Driven Models for Simulating Methanotrophic 

Culture 

DDM have the potential to simulate any biological or me- 

thanotrophic culture performance whilst considering all the need- 

ed factors that may affect the culture performance. Interestingly, 

these factors can be considered and simulated in a DDM, even 

though, the impact of these conditions are not fully understood 

or can be mathematically described (Khan and Valeo, 2016a, 

2017a, 2017b). In other words, DDMs allow to model a system 
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Figure 1. The probability density function of the specific growth rate using the values of µmax and Ks as reported in the literature. 

 

based on the available input data (e.g., the KBM coefficients) 

and the required output data (e.g., methanotrophic biomass). 

Figure 2 shows the framework for both the KBM and the DDM 

models. It is noteworthy that the experiments performed to ob- 

tain the data used for developing the DDM model should be 

well designed to achieve two objectives. The first objective is 

to consider all the factors that may affect the simulated process 

performance (Maier and Dandy, 2000). For instance, specific 

nutrients directly affect some enzymes activity like the copper 

effect on the expression of the methane monooxygenase (MMO) 

enzyme (Semrau et al., 2010) or the competitive inhibitory ef- 

fect between the ammonium and the methane on the ammonia 

monooxygenase (AMO) and MMO enzymes must be consider- 

ed (Soliman and Eldyasti, 2016; AlSayed et al., 2018a). Second- 

ly, the experimental parameters should be well distributed over 

all the realistic and viable values of the parameters of interest 

(Maier and Dandy, 2000a). For example, wide range of all the 

possible nitrogen concentrations should be used in the experi- 

ments to fully represent the nitrogen effect on the culture per- 

formance. Collectively, it can be concluded that a DDM based 

on data obtained from well-designed experiments may be used 

to predict type I methanotrophs culture in order to design me- 

thanotrophic cultivation bioreactors. 

One common and increasingly popular type of DDM are 

artificial neural networks (ANN) which have been widely used 

for modeling complex relationships between inputs and outputs 

in nonlinear systems in several engineering disciplines (Noura- 

ni et al., 2012; Kisi et al., 2013; Khan and Valeo, 2016b). The 

Multi-Layer Perceptron (MLP) model is a type of ANN, and 

consists of one input layer, at least one hidden layer and one 

output layer. These layers have processing elements called neu- 

rons that are interconnected through connection links; each link 

has a weight and bias that define the strength of the connection 

(Govindaraju, 2000). ANNs have several advantages such as 

the ability of detecting complex non-linear relationship between 

dependent and independent variables. However, ANN has some 

challenges such as the requirement of high computational pow- 

er (for very large datasets), the inability of extrapolating result 

beyond the range of data used for training, and challenges aris- 

ing from the lack of the uncertainty analysis which might im- 

pact the results of the models.  

In this research, a novel proof-of-concept modelling ap- 

proach is proposed to demonstrate that DDM can be used to 

efficiently model bioprocesses in WRRFs, instead of the more 

common KBM approach. Specifically, an innovative approach 

is proposed to develop and optimize a series of MLP ANN to 

simulate the cultivation of mixed culture methanotrophs type I 

bacteria enriched from sewage sludge considering multiple op- 

erational and/or environmental conditions. The proposed mod- 

els are developed for a wide range of input parameter values 

and operational conditions which is not possible to do under the 

standard KBM approach. The significance of the proposed ap- 

proach is twofold: first, the ability of DDMs (specifically ANNs) 

to model complex bioprocesses is demonstrated, and second, 

the ANNs are used to highlight the relative importance or in- 

fluence of input parameters on the bioprocesses. Results from 

this research will help improve the designs of methanotrophic 

cultivation bioreactors, give a better understanding of the im- 

portant variables controlling the methanotrophic processes, and 

can ultimately lead to higher resource recovery in WRRFs. Such 

an approach can facilitate the adoption of novel technologies 

and develop better understanding of the effect of the operation- 

al conditions within WRRFs.  

 

 
 

Figure 2. KBM and DDM framework to predict culture 

performance and design the bioreactor. 

2. Methods 

To develop and analyze the ANN models, first, five “core” 
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and four “ratio” factors are used as inputs to predict methan- 

otrophic biomass density and methane concentration (the fac- 

tors needed to determine the KBM coefficients). The impact 

and influence of these factors on ANN model performance is 

then analyzed. Following this, input variable selection (IVS), a 

key component in ANN model development and uncertainty 

quantification (Ramesan et al., 2018, Snieder et al., 2020), is 

performed to determine the most influential “core” factors to 

further refine the ANN model. Lastly, the architecture of the 

ANN is then optimized by investigating the impact of the num- 

ber of nodes (neurons) and the amount of data used for training 

the model. The following sections provide an overview of the 

methods used to collect the data, develop the ANN models, and 

to optimize the ANN architecture.  

 

2.1. Data Collection 

The data were collected from multiple batch experiments 

performed over 6 months using methanotrophic culture enrich- 

ed from sewage sludge obtained from the Humber Wastewater 

Treatment Plant in Toronto, Canada. The experiments were 

performed under diverse operational conditions using 250 mL 

serum bottles at room temperature (22 ~ 25 oC), neutral pH (6.5 

~ 7.5), and a shaking speed of 165 rpm. The reaction liquid me- 

dium volume was equal to 50 mL, whereas, methane and oxy- 

gen were added to the headspace after being evacuated as de- 

scribed in AlSayed et al. (2017). The model was built using 49 

data sets with 10 inputs (listed in Table 1) and two outputs (de- 

scribed in section 2.2). These 49 data sets were collected through- 

out 12 different batch experiments (performed in triplicates) 

which are described in detail in AlSayed et al. (2017, 2019) and 

AlSayed et al. (2018b). Over the experiments, varied nitrogen, 

copper, methane, and oxygen concentrations, initial biomass 

densities, food to microorganisms (F/M), nitrogen to microor- 

ganisms (N/M), carbon to nitrogen (C/N), and oxygen to meth- 

ane (O/M) ratios were applied (the ranges are shown in Table 

1). All the incubations were completed within 24 ± 4 hours. 

Along with the duration, final biomass density (Bf) and final 

methane concentration (Mf) were measured to determine mi- 

crobial growth rate (hr-1), methane growth yield (g-DCW/g-

CH4consumed), and methane uptake rate (mg-CH4/hr) to assess the 

methanotrophic microbial activity.  

 

Table 1. Process Input Parameters for ANN Models 

Parameter Unit Range 

Core factors 

Methane volume mL 25 ~ 200 

Oxygen volume mL 25 ~ 200 

Nitrogen concentration mM 10 ~ 160 

Copper concentration µM 0 ~ 80 

Initial biomass density OD600 0.2 ~ 3 

Ratio factors 

F/M ratio g-CH4/g-DCW 1.3 ~ 20.7 

C/N ratio gC-CH4/g-N 0.25 ~ 14 

N/M ratio g-N/ g-DCW 0.5 ~ 8.5 

O/M ratio mL/mL 1 ~ 4 

 

2.2. ANN Model Development 

A series of MLP ANN models comprising one input layer, 

one hidden layer and one output layer was used in this research 

to predict both the final biomass density (Bf) and final methane 

concentration (Mf) of enriched methanotrophic bacteria. The 

selection of input parameters for each configuration is detailed 

in section 2.3, while the selection of the optimum ANN archi- 

tecture is detailed in section 2.4. The two output parameters (Bf 

and Mf) are the controlling variables that govern the KBM coef- 

ficients and were selected as the model outputs since they are 

the direct outcome measured from the laboratory experiments. 

The KBM coefficients can be determined according to Equa- 

tions 5 to 7, given that time is constant and equal to 20 hours 

on average:  
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where Bi and Mi are the initial biomass density, and initial meth- 

ane concentration, respectively. 

All model data (input and output data) were pre-processed 

before training the ANN by normalizing each dataset between 

the range [0, 1]. This step is an important process and governs 

overall ANN performance since it ensures that all the variables 

get an equal attention. A variety of the training (i.e., calibrating) 

algorithms exist to develop ANNs including but not limited to 

Levenberg-Marquardt, Bayesian Regularization and Scaled Con- 

jugate Gradient logarithms (Tu, 1996). The LevEnberg-Mar- 

quardt (LM) backpropagation algorithm was selected as the 

training algorithm as it is considered as one of the most effi- 

cient algorithms for ANN models (Ahmadian, 2016). This is a 

gradient descent algorithm that adjusts the weights and biases 

of the ANN to minimize the error between the calculated out- 

puts and the target outputs. The LM algorithm was selected due 

to its ability to use a hybrid technique which combines both 

GaussNewton and steepest descent approaches to find the po- 

tential optimal solution. The previous technique is highly suit- 

able in the case of models that have large number of parameters 

with nonlinear relationship which makes it a good fit for the 

models used in this study (Lourakis, 2005; Wilson and Man- 

tooth, 2013). Prior to ANN model architecture optimization, 

the full dataset was randomly split into a 70%:15%:15% ratio 

for training, validation and testing datasets, respectively. An 

early-stopping algorithm was used to terminate the training once 

the mean squared error of the validation samples starts to in- 

crease, indicating that model generalization has reduced (Alvisi 

et al., 2006). Only the testing (i.e., independent) dataset was 
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used for model performance and inference purposes. The net- 

work was trained using both 5 and 10 neurons in the hidden 

layer (NH) for comparison purposes. Further refinements into 

the size of the hidden layer was conducted during the optimiza- 

tion phase (detailed in section 2.4).  

Each model was trained 100 times (known as multi-start) 

to account for the random initialization used for the training 

algorithm. By retraining the model several times, it ensures that 

the uncertainty in model calibration and the variability in each 

model performance is accounted for. A collection of these 100 

repeated trained models for the same input, output and archi- 

tecture configuration is referred to as an ensemble.  

The normalized mean square error (NRMSE) and the squared 

Pearson correlation coefficient (R2) for each case were calcu- 

lated using Equations (8) and (9) and compared to assess the 

model performance. The NRMSE (rather than RMSE) was used 

as the values for both outputs (Bf and Mf) have different range 

– the normalization allows for a direct comparison across dif- 

ferent model configurations and ensembles:  
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where Yobs and Ymod are the observed and predicted values for 

each output variable, RMSE is the root mean squared error be- 

tween the Yobs and Ymod. 

 

2.3. ANN Input Variable Selection 

The selection of inputs for an ANN model are a signifi- 

cant source of uncertainty in overall model performance and 

are the key factors that contribute to a successful ANN model 

(Khan et al., 2018). Thus, the selection of inputs to predict both 

Bf and Mf a two-step procedure was used. First, six model en- 

sembles were created consisting of five “core” factors and four 

“ratio” factors (as listed in Table 1). Methanotrophic microbial 

activity is influenced by multiple operational and environmen- 

tal conditions (Semrau et al., 2010). The most influential fac- 

tors are the methane and oxygen concentrations (two of the core 

factors). Methane is the sole source that provide the cells with 

its energy requirements and cellular carbon representing about 

50% of the cellular dry weight. Whereas, oxygen is the electron 

acceptor which is needed with satisfactory concentrations to 

maintain the aerobic respiration of methane (Hanson and Han- 

son, 1996; Madigan et al., 2015). Therefore, no methanotrophic 

activity is expected to take place in the absence of methane and 

/or oxygen.  

Furthermore, nitrogen concentration, added as sodium ni- 

trate, has been shown to notably affect the methanotrophic ki- 

netics as one of the macro-nutrients essential for any micro- 

bial growth. However, it was recently reported that excessive 

nitrate addition may inhibit the microbial activity due to the as- 

sociated increased salinity (AlSayed et al., 2019). Copper pres- 

ence is a decisive parameter that directly controls the expres- 

sion of the MMO enzyme responsible of catalyzing methane 

oxidation, and by consequence, all the metabolic activities by 

the cells (Semrau et al., 2010). Methane diffusion from the gas- 

eous phase to the liquid phase is one of the main limitations to 

model methanotrophs growth kinetics. It is directly related to 

the methanotrophic biomass density in the experiments (Stone 

et al., 2017). Thus, nitrogen, copper and initial biomass density 

were included in the set of candidate inputs as the remaining 

“core” factors. Collectively, it can be concluded that methane, 

oxygen, nitrogen, copper, and biomass concentrations are the 

five core factors that needs to be considered in modelling the 

microbial activity of any methanotrophic culture.  

In addition to the core factors, four “ratio” factors have 

been reported to affect the microbial activity independent from 

the effect of the core factors. These four ratio factors are O/M, 

F/M, N/M, and C/N (Tchobanoglous et al., 2003; AlSayed et al., 

2017). The ratio factors are correlated and dependent on the core 

factors which may negatively affect the model performance. 

Thus, in this research the impact of the “ratio” factors on the fi- 

nal Bf and Mf concentration is explored. First, a control model 

is developed that includes all nine candidate inputs: five core 

and four ratio factors. Following this, in order to enhance the 

model performance, the model was retrained after eliminating 

F/M, C/N, N/M, and O/M ratios from the inputs, sequentially. 

Lastly, a model that only includes the five core factors was de- 

veloped. Comparing these six model configurations will help 

determine the influence of the ratio factors on the final Bf and 

Mf concentrations, as well as the ability of ANN models to im- 

plicitly account for their physical influence (since the ratios are 

a function of the core factors).  

Subsequently, in order to minimize the large number of in- 

puts (initially nine inputs in total), IVS was carried out to the 

model ensembles to eliminate the input variables that have mi- 

nor to no impact on the output values or ANN performance. 

This step may enhance the model performance by eliminating 

the irrelevant variables resulting in a less complex and more ac- 

curate model. Moreover, this step would help investigating the 

impact of the different operational parameters on the outputs 

towards a better understanding of the process a key objective 

of this research. First, the network was trained using the sim- 

plest model consisting of only methane and oxygen concentra- 

tions as inputs and Bf and Mf as outputs. Subsequently, each one 

of the remaining input variables (nitrogen and copper concen- 

trations and initial biomass density, representing the operation- 

al parameter) were added separately to the previous two inputs 

variables (methane and oxygen concentration).  

Thus, to meet this objective, eight ensemble ANN models 

were trained using different combinations of the core factors. 

One model includes all nine input variables, and one includes 

only methane and oxygen. Three models included methane, oxy- 

gen and one each of the operational parameters (initial biomass, 

copper, and nitrogen), and three models that included methane, 

oxygen and two of the operational parameters (nitrogen and cop- 

per, nitrogen and initial biomass, and initial biomass and cop- 

per). The performance of the eight ensemble models was quan- 

tified using NRMSE and R2. 
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2.4. ANN Architecture Optimization and Uncertainty 

Analysis 

Two main factors in ANN architecture that contribute to 

the uncertainty in model performance are the number of nodes 

in the hidden layers (NH) and the data division (amount of data 

used for training, validation, and testing). Choosing a well-bal- 

anced number of nodes is crucial towards developing a success- 

ful model since having fewer than the required NH might be not 

sufficient to enable a good representation of the system. On the 

other hand, having a higher NH can result in overfitting meaning 

that model has lost its ability to generalize (Maier and Dandy, 

2000). Similarly, identifying the amount of data used for train- 

ing, validation, and testing is a key factor as using a small a- 

mount of data for training can result in poor model performance 

and using more data will result in less data set for validating 

and testing (which may be insufficient for model inference). 

Typically, both NH and amount of data used for data division 

are selected based on a trial and error method, however a cou- 

pled method to identify the optimum NH and data division has 

been proposed (Khan and Valeo, 2017b). In this research, the 

previously suggested method has been followed with some mi- 

nor adjustments to fit our model and is described below.  

To start the network architecture optimization, the data di- 

vision was randomly selected as 70%:15%:15% for training, 

validation and testing, respectively. The network was then train- 

ed using 5 inputs (the core factors only) using different number 

of nodes in the hidden layer (specifically 2, 4, 6, 8, 10, 12, 14, 

16, 18, and 20 neurons) to identify the optimum NH for the mod- 

el. This step was repeated 100 times for each NH to take in con- 

sideration the variation in the model performance for the same 

iteration. Following this, the process was repeated using the op- 

timum number of neurons selected in the previous step but using 

different amount of data for training (10, 20, 30, 40, 50, 60, 70, 

and 80%) and each iteration was run 100 times as well. The 

NRMSE and R2 were calculated for each step and the number 

of nodes and percentage of data division that led to the lowest 

NRMSE and highest R2 were selected as the optimum NH and 

the optimum data division.  

3. Results and Discussions 

3.1. Influence of Ratio Factors on ANN Performance 

Six ANN ensemble models were trained using different 

combinations of the core and ratio factors, using both 5 and 10 

NH for each configuration. Figure 3 shows the median values 

for R2 and NRMSE for the ensemble models for the two outputs 

Mf and Bf. As shown in Figure 3, no notable difference can be 

observed between the models with all nine inputs and the mod- 

els without the ratio factors. In contrast, a minor improvement 

is observed by removing all the ratio factors. Additionally, no 

clear difference in the pattern of model performance can be ob- 

served when NH varied from 5 to 10. A recent study has inves- 

tigated the significance of F/M, N/M, and C/N ratio: the results 

illustrated that F/M has significant effect on the methanotro- 

phic microbial activity, while, N/M and C/N has limited or no 

effect on methanotrophs growth (AlSayed et al., 2017). In con- 

trast, the results from the models imply that the model has as- 

signed all ratio factors minimal weights, and by consequence, 

minor effect on the prediction of both outputs. It can be deduced 

from these results that the ANN models have considered the 

effect of the ratios implicitly (since they are derived from the 

core factors) without a need to include them as explicit input 

parameters. This is a significant result that highlights the utility 

of the ANN approach for modelling methanotrophic processes. 

In KBM, the ratio factors must be considered apart from 

the core factors which add more sophistications in the model 

(Tchobanoglous et al., 2003). Moreover, parameters like N/M 

and C/N ratio may have been overlooked or neglected if their 

effect has not been quantified or studied in the literature. None- 

theless, it was shown in this section that the effect of those ra- 

tios is already considered in the model which is demonstrated 

by the good performance of the model. This is the reason why 

it is proposed that DDM is superior tool to model emerging 

technology. Simply put, processes can be modelled and design- 

ed prior to being fully understood and physically/chemically/ 

biologically quantified. As an example, the effect of N/M ratio 

on methanotrophs was not reported until recently (AlSayed et 

al., 2017) and has not been modelled yet. Here, it is worth men- 

tioning that the inhibition mechanisms of ammonium (as nitro- 

gen) on methanotrophic microorganisms is significantly differ- 

rent than other microbes. This is due to its unique possession 

of the MMO enzyme and its similarities with the AMO enzyme 

responsible for ammonium oxidation (AlSayed et al., 2018a). 

As a result, more studies are still needed to be able to quantify 

it and model it. Yet, such effect was already considered in the 

DDM without even the need to include it as independent vari- 

able or consider it as a variable. 

Therefore, ratio factors were eliminated to avoid the cor- 

relation between the input variables and consequently mini- 

mize redundancy resulting in a final ANN model configuration 

with 5 core factors as the inputs and the 2 outputs. Such a find- 

ing emphasizes the advantage for DDM over KBM as it can 

build indirect and complex relationships between the inputs and 

outputs without being fully physically or mathematically un- 

derstood.  

 

3.2. Influence of Operational Variables on ANN 

Performance 

Another advantage for the constructed ANN model is its 

capacity to assess each of the input variables effect on the out- 

puts. Eight model configurations were developed to investigate 

the influence of the core factors on the methanotrophic micro- 

bial activity. As mentioned above, methane and oxygen are cru- 

cial for methanotrophic growth and no activity is expected in 

their absence. So, methane and oxygen have been selected as 

the minimum inputs to develop the simplest model with the 

fewest inputs. Figure 4 shows the modelled and target values 

for the Bf and Mf for the training, validation, and testing for the 

configuration where only methane and oxygen are used as in- 

puts. It can be concluded that the model failed to appropriately 

describe the outputs. For example, the model with NH = 10, the 

median R2 values are 0.197 and 0.175, whereas, the median 

NRMSE values are 0.759 and 0.521 for Bf and Mf, respectively.  
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Figure 3. The effect of ratio factors on the model performance. Presented values are for the median and error bars show the lower 

and upper quartiles, (A) NH = 5 and (B) NH = 10. 

 

 
 

Figure 4. Correlation between modelled and measured outputs using methane and oxygen as the only inputs, (A) for Bf  

and (B) for Mf. 

 

Commonly, KBM relies on the electron acceptor/donor con- 

centration to predict microbial activity (Rittmann and McCarty, 

2012). Showing poor performance when only using KBM in- 

puts can be used to highlight that KBM is not accurate enough 

to describe and predict the microbial activity as seen in the data 

through the laboratory experiments. Furthermore, it confirms 

the merit of this research of including the other operational fac- 

tors as key inputs to describe the microbial activity using DDM. 

Subsequently, two additional sets of models were devel- 

oped: three models that included methane, oxygen and one of 
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the operational factors (initial biomass, copper, and nitrogen), 

and three models that included methane, oxygen and combi- 

nations of two of the other operation factors (nitrogen and cop- 

per, nitrogen and initial biomass, and initial biomass and cop- 

per). The objective of these models is to better understand the 

influence of copper concentration, nitrogen concentration, and 

initial biomass density on the culture activity. Furthermore, it 

is an attempt to examine the model capacity to rank the influ- 

ence of each factor on the outputs. Figure 5 presents the me- 

dian values of R2 and NRMSE values for Bf and Mf.  

The presence of copper is crucial for methane uptake since 

it is a micronutrient that is needed by methanotrophs to main- 

tain the MMO activity (Semrau et al., 2010). The variation in 

copper concentration did not dramatically affect either the meth- 

anotrophic growth or the methane uptake (AlSayed et al., 2019). 

Moreover, it is usually added with trace concentrations range 

from 5 to 20 µM (Bowman, 2006). This phenomenon is demon- 

strated in Figure 5 where it is apparent that copper is the least 

influential parameter on the Mf and Bf, since it has the lowest in 

R2 and NRMSE for both outputs while using NH values of 5 and 

10.  

On the other hand, the addition of initial biomass density 

or the nitrogen concentration resulted in similar improvements 

on model performance, as shown in Figure 5. This observation 

shows that the model has assigned similar weights for both fac- 

tors and that similar attention should be paid to both parameters 

to enhance the microbial activity in an operational setting. High 

initial biomass density hinders the attainment of higher meth- 

anotrophic activity. It affects the methane diffusivity into the 

liquid phase from the gaseous phase which results in limited 

microbial activity (Han et al., 2009). Moreover, it is directly re- 

lated to the F/M ratio that was recently reported to notably af- 

fect the methanotrophic activity (AlSayed et al., 2017). The other 

parameter is nitrogen which is widely reported that increaseing 

nitrogen concertation when added in the form of nitrate has no- 

table influence on the microbial activity (AlSayed et al., 2019). 

This influence can be deduced by the fact that nitrogen repre- 

sents up to 13% of the cellular materials (Madigan et al., 2015). 

Moreover, some recent studies reported that some methanotro- 

phic strains can utilize nitrate as the electron acceptor to secure 

the needed energy requirements under oxygen limited condi- 

tions (Alrashed et al., 2018). Combining these facts together, it 

can be concluded that nitrogen is crucial for methanotrophs to 

support its requirements of energy and cell synthesis require- 

ments.  

Lastly, similar findings can be seen when methane and 

oxygen are combined with two other inputs (copper, nitrogen, 

and initial biomass concentration) as shown in Figure 5. In these 

models (each of which have four inputs in total), the model per- 

formance (expressed as NRMSE and R2) was higher than those 

models that only three inputs (methane, oxygen and one of the 

operational parameters) described above. Moreover, models de- 

veloped using nitrogen concentration and initial biomass den- 

sity is clearly better than the other two models based on the per- 

formance metrics. Whereas, the elimination of either initial bio- 

mass density or nitrogen concentration resulted in similar per- 

formance. These observations agree with two findings discuss- 

ed above: first, that the inclusion of more independent opera- 

tional and environmental parameters results in better prediction 

of the microbial activity. This finding is supported by the im- 

provement attained when the five core factors are used as the 

input variables. Secondly, nitrogen concentration and initial bio- 

mass density have almost the same ranking in terms of effect 

on the microbial activity, while, copper has a lower influence.  

 

3.3. ANN Architecture Optimization 

The aim of this analysis was to identify the optimum NH 

and data division for the ANN configuration – focusing spe- 

cially on the models with the five core factors as inputs. First, 

the amount of data was randomly split into 70, 15 and 15% ra- 

tio for training, validation and testing, respectively and the mod- 

el was trained using different values for NH, and repeated 100 

times to take in consideration the random selection of the data. 

The median, the quartile, the upper and lower limits for each 

number of neurons are shown in Figure 6. The figure shows 

that increasing the number of neurons from 2 to 8 resulted in a 

slight decrease in the NRMSE and an increase in R2 for the 

trained data for both outputs. It is noteworthy that increasing 

the NH to 8 resulted in a lower variation in the quartile values 

for both Bf and Mf. In terms of validation and testing, the NRMSE 

and R2 values were not considerably affected by changing the 

number of neurons. On the other hand, further increase in num- 

ber of neurons (from 8 to 20) did not result in notable improve- 

ment for the NRMSE and R2 for Bf (as seen in Figure 6(A) and 

(B) and instead an increase in the quartile values is evident. 

Similarly, increasing the NH from 8 to 20 for the model with Mf 

resulted in limited improvement of the model performance, 

even though that the R2
 values for the training data increased. 

This increase was accompanied with an increase in the model 

variability as shown in Figure 6(C) and (D). The previous re- 

sults imply that using a simpler model may be more adequate 

to describe the model and reduce computational effort. Hence, 

NH of 8 was selected as the optimum number of neurons in the 

hidden layer. 

Following this, the influence of the data division on the 

model performance was investigated using the optimum num- 

ber of neurons (NH = 8). As shown in Figure 7(A) and (C), in- 

creasing the percentage of trained data from 20 to 80% result- 

ed in notable decrease in the NRMSE of the validation and test- 

ing and no notable change in the training NRMSE for both the 

model outputs (Bf and Mf) implying an improvement in the 

model performance. Similarly, the R2 values followed a similar 

trend to that of the NRMSE values as shown in Figure 7(B) and 

(D). The previous results revealed that the model required more 

training data to be better represent the measured data and that 

increasing the training percentage to 80% did not result in over- 

fitting to the training data since the remaining data set was still 

sufficient for a robust statistical inference of the data set. There- 

fore, it can be concluded that using 80, 10, and 10% for training, 

validation, and testing, respectively, is the optimum data divi- 

sion for this dataset. 

To assess the impact of including different operational 

conditions such as copper and nitrogen concentrations and 
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Figure 5. Model performance with different combinations of input variables. Presented values are for the median and error bars 

show the lower and upper quartiles, (A) NH = 5, (B) NH = 10. 

 

 
 

 
 

Figure 6. Number of Neurons (NH) influence on the outputs of the model with 5 variable inputs using data split ratio of 70, 15, 

and 15% for training, validation and testing, respectively: (A) NRMSE for Bf, (B) R2 for Bf, (C) NRMSE for Mf, and (D) R2 for Mf. 

 

initial biomass density as input variables on the model perfor- 

mance the previous optimization was repeated using a model 

with only two inputs: methane and oxygen concentration only 

(rather than the five core factors). As illustrated in Figures 8 

and 9, relying only on the electron donor and acceptor (KBM 

inputs) to model the microbial activity of the methanotrophic 

bacteria resulted in a poor model performance using all differ- 

rent combinations of NH and data division which confirms the 

findings of this research that the other core factors (i.e., the op- 

erational factors) are important contributors and predictors of 

methanotrophic processes. This data should be included in any 

models attempting to describe the modelling behavior, and data 
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driven models, such as ANNs are able to incorporate the differ- 

rent operational conditions resulting in more accurate models 

than typical KBM. 

 

3.4. Final ANN Model Performance 

After ANN model architecture determination, the model 

was retrained using the optimum data division (80%:10%:10%) 

and optimum NH (8) and the results of the model median values 

for NRMSE and R2 are presented in Table 2. The measured and 

modelled data values for the Bf and Mf for the training, valida- 

tion, testing, and all data, were plotted for the final model (Fig- 

ure 10). As illustrated, the final model was able to accurately 

predict the measured outputs at all the different operational con- 

ditions implying the success of the ANN in simulating the cul- 

tivation of mixed culture methanotrophs type I bacteria enrich- 

ed from sewage sludge using multiple environmental conditions. 

 

Table 2. Overall Model Performance under Optimum 

Parameters 

 

Output 

Bf Mf 

NRMSE R2 NRMSE R2 

Training 0.2 0.88 0.33 0.85 

Validation 0.25 0.82 0.41 0.75 

Testing 0.35 0.7 0.59 0.58 

All 0.23 0.84 0.39 0.79 

 

3.5. Significance and Implications 

An MLP ANN model to simulate the cultivation of meth- 

anotrophs type I bacteria enriched from sewage sludge under 

different conditions has been developed. In order to overcome 

the challenges encountering the KBM, a data driven approach 

has been followed taking in consideration all the factors that 

might have an effect on the culture performance. These factors 

included methane, oxygen, nitrogen, copper, and biomass con- 

centrations which were grouped as the core factors, as well as 

four ratio factors which are O/M, F/M, N/M, and C/N. During 

the model construction phase, it was revealed that eliminating 

the ratio factors did not affect the model performance, rather a 

slight improvement was observed. This finding emphasizes the 

benefits of using DDM in identifying the relations between 

inputs and outputs that have not been fully understood yet ei- 

ther mathematically or physically. Moreover, the impact of the 

copper, nitrogen and initial biomass concentrations on the out- 

put parameters has been investigated using 8 different models 

comprising of different combinations of the core factors. The 

results showed that the nitrogen and initial biomass concentra- 

tions are more influential on the microbial activity than the cop- 

per concentration, which is in accordance to what have been re- 

ported in the literature. In addition, it was revealed that incur- 

porating more environmental and operational factors as the 

model inputs resulted in a better performance than that of using 

only the methane and oxygen as the only model inputs. The 

previous results consolidate the hypothesis of favoring the data 

driven approach over the physical models for simulating the 

microbial growth, as the latter does not account for the change 

in other operational conditions (i.e., when only methane and 

oxygen concentration is considered). Furthermore, in order to 

optimize the network architecture, a previously proposed pro- 

tocol has been followed with some minor adjustments to select 

the optimum number of neurons on the hidden layer (NH) as 

well as the optimum amount of data for training, validation, and 

testing (Khan and Valeo, 2017b). The results demonstrated that 

using a NH = 8 and data division of 80, 10, and 10% for training, 

validation, and testing, respectively, results in the best model 

performance. 

 

 
 

 
 

Figure 7. Percentage of trained data influence on the performance of the model with 5 input variables using NH = 8: (A) NRMSE 

for Bf, (B) R2 for Bf, (C) NRMSE for Mf, and (D) R2 for Mf. 
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Figure 8. Number of Neurons (NH) influence on the outputs of the model with 2 variable inputs using data split ratio of 70, 15, 

and 15% for training, validation and testing, respectively: (A) NRMSE for Bf, (B) R2 for Bf, (C) NRMSE for Mf, and (D) R2 for Mf. 

 

 
 

 
 

Figure 9. Percentage of trained data influence on the performance of the model with 2 input variables using NH = 8: (A) NRMSE 

for Bf, (B) R2 for Bf, (C) NRMSE for Mf, and (D) R2 for Mf. 

 

Currently, there is a push to substitute the well-understood 

and matured process in STPs with more energy and cost-effi- 

cient processes. Nonetheless, such alternative/emerging proc- 

esses are complex and not fully understood which challenge the 

shift from STPs to WRRFs. This study proposes the employ- 

ment of DDM models to model the emerging systems as an al- 

ternative to KBM. Given its multiple biotechnological appli- 

cations, methanotrophic-based bioprocesses are strong candi- 

date to be utilized in WRRFs to revalorize the typically flared 

biogas in STPs. Therefore, this study developed an ANN mod- 

elling approach to simulate the enrichment of a mixed culture 

type I methanotrophs. The success of the proposed modelling 

approach demonstrates a proof-of-concept of the potential to 

use of DDM models in designing WRRFs. The complexity of 

methanotrophs-based bioprocesses can be owing to its sensi- 

tivity to different environmental conditions such as copper and 

nitrogen concentrations. In additions, the process includes the 

interaction of three phases: gaseous (methane and oxygen), 

aqueous (the nutrients medium and the metabolic intermedi- 

ates), and solid (the mixed microbial consortium). As a result, 

significant variation in the reported KBM output is evident as 

demonstrated in Figure 1. 

In this study, the ability of the ANN model to consider the 

complex relationships between the inputs without the need to 

add them separately as individual inputs was demonstrated. In 

contrast, in the KBM, the relationship between the operational  
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Figure 10. Correlation between modelled and measured outputs of the final model: (A) for Bf and (B) for Mf. 

 

parameters must be included. Thus, it can be implied that, using 

DDM using data obtained from conditions mimicking the actual 

conditions, novel bioprocesses can be validated prior of being 

fully understand and considering all the factors affecting it. In 

addition, the model found to be able to assess the effect of dif- 

ferent operational conditions and rank these operational condi- 

tions according to their significance effect on the outcome. These 

findings address one of the drawbacks of the KBM of relying 

only on the electron donor and acceptor to predict the microbial 

activity. In addition, the study highlighted the significance of: 

(i) optimizing the number of neurons in the hidden layer (NH) 

and (ii) data division in order to generate an accurate ensemble 

of models to stimulate the cul- tivation of the targeted bioproc- 

ess. Collectively, the findings of this research pave the way for 

using DDM to model different biological processes in order to 

facilitate the transition from the current STPs operation to the 

WRRF concept. 

4. Conclusion 

Over the last decade, the shift towards WRRFs is gaining 

traction due to several environmental and economic benefits. 

The emerging bioprocesses in WRRFs are not fully understood 

from the microbiological and kinetic perspectives leading to 

difficulties in using kinetics-based models. Thus, the emergence 

of new technologies to support WRRFs is hampered by the lack 

of models to support the design of bioreactors and to better un- 

derstand the bioprrocesses. In this research, data driven models 

(DDM) are proposed as a robust alternative towards modelling 

emerging bioprocesses. DDM utilization for modelling the bio- 

logical processes is a prominent area of research that can boost 

the adoption of new bioprocesses that support the shift STPs to 

WRRFs. A proof-of-concept that DDM has the potential to re- 

place KBM to more accurately describe and predict the micro- 

bial activity in WRRFs is proposed in this research. It is the 

first study to model the overall process of methanotrophs, which 

can be extended to other microbes and bioprocesses. This re- 

search demonstrated that ANN models can be used to better un- 

derstand and rank the influence of different input variables (i.e., 

the physical parameters that influence methanotrophs) on the 

microbial activity. Further investigation can be performed to 

estimate the model limitations to clarify to what extent can data 

driven models accurately describe microbial cultures. In addi- 

tion, modelling commercial scale reactors of bioprocesses would 

include much more input variables and expose higher model 

complexity which would require more advanced IVS technique. 
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