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ABSTRACT. Optimization technology is widely applied to maximize economic profit under ecology constrains in environmental 

management systems. To tackle the inherent uncertainties, inexact optimization methods have been proposed. Interval linear program- 

ming (ILP) model has drawn increasing scholarly attention. ILP model describe uncertainty by one coarse scaled stochastic process. 

However, uncertainty often involves multiple stochastic processes when zooming into high resolution. ILP model may not satisfied fine 

scale constraints. A time variant interval linear programming (TVILP) model is developed to implement temporal downscaling, and 

likewise, a heuristic algorithm integrating dynamic programming is proposed for Markov chained TVILP. Dynamic programming can 

converts time complexity exponential to polynomial. In the current paper, the performance of TVILP model is analyzed based on the 

following three metrics: maximal profit (M_profit), constraint violation risk (CVR), and maximal profit path risk (MPR). The perfor- 

mance of TVILP is further compared with the performance of Best and Worst method, the classic ILP model, Interval linear programming 

contractor, and Interval-parameter multi-stage stochastic linear programming. Experimental results reveal that TVILP provides refined 

solutions on a smaller granularity whose decision space contracts based on the most possible transition paths. Unable to obtain the maxi- 

mum profit, though, TVILP does pose decreased constraint violation risk and maximal profit path risk, facilitating more feasible and 

reliable decision-making on environmental management. 
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1. Introduction 

In pursuing sustainable development, people have always 

been confronted with dilemmas between economic profit and 

social or environmental cost (Fu et al., 2021; Zhai et al., 2021). 

Environmental management systems (EMS) regulate an organ- 

ization in a comprehensive, systematic, planned, and document- 

ed manner, which has been frequently deployed to balance the 

two conflicting goals. Many applications, such as those for waste 

disposal and agriculture irrigation, are designed to minimize mon- 

etary cost under environmental constraints using programming 

methods (Ji et al., 2020; Li et al., 2021). Hence, optimization 

technologies play an important role in EMS. 

Uncertainties are inherent in natural environment (Moeini 

and Soltani-nezhad, 2020; Li et al., 2020; Wang et al., 2021). 

To be specific, the amount of waste in a city is related to its 

socio-economic development; likewise, precipitation is related 

to climate change and human production activities in the region 

(Shrestha and Wang, 2020; Xu et al., 2021). These uncertainties 

may complicate the issue of optimization. It is unlikely to 

optimize the problem just by ignoring these uncertainties, as it  
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can lead to inaccurate or even wrong decisions. Therefore, adopt- 

ing an accurate optimization method to study EMS is essential. 

In previous studies, linear programming (LP) method was em- 

ployed to optimize production management of factories and 

manufacturers (Hung et al., 1996), which was later extended to 

environmental engineering (Daniel et al., 1997; Chang et al., 

2001), becoming a dominant optimization technology in EMS. 

Unlike production management, there exist quite a few uncer- 

tainties in environment-oriented management, including rainfall 

in agriculture irrigation and waste volume in waste disposal. 

Therefore, inexact LP models and methods have been constant- 

ly researched and developed. For instance, robust optimization 

(Beyer and Sendhoff, 2007) has emerged, immune with respect 

to parameter drifts, model sensitivities and others. 

The inexact programming methods rely on probability dis- 

tribution or membership function; however, it is not easy to 

acquire relevant knowledge. Alternatively, adaptive strategy 

can be employed (Zhu et al., 2012); however, given the real-time 

sudations, the adaptive strategy is not appropriate in terms of 

budgeting. The upper and lower bounds are quite straight for- 

ward in describing a random variable. Huang et al. (1992) pro- 

posed grey linear programming approach for municipal solid 

waste management plan for municipal solid waste management 

and found the two-step method (TMS) is effective in solving 

interval linear programming (ILP) problems. However, TMS 

could cause constraint violations in its solution space, and ac- 
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cordingly, many improved methods have been proposed. Huang 

and Cao (2011) used a three-step method (ThSM) to implement 

the decision space based on the original space of the TSM so- 

lution restriction process. Wang and Huang (2014) proposed an 

improved solution method based on TSM (ITSM) to avoid so- 

lution violation by adding extra conditional constraints during 

the process of solving the sub-problems, which is better than 

TSM. 

With the higher robustness in terms of reality orientation, 

ILP has been applied to many real-world EMS applications, 

such as waste management (Pires et al., 2011; Wu et al., 2015), 

water resources allocation (Lv et al., 2010; Nikoo et al., 2012), 

and energy systems management (Dong et al., 2012; Li et al., 

2014). For instance, Guo et al. (2010) proposed an inexact fuzzy- 

chance-constrained two-stage mixed-integer linear program- 

ming (IFCTIP) approach integrating inaccurate planning, two- 

stage stochastic programming, integer programming and fuzzy 

stochastic programming into a general optimization framework 

before applying it into the flood management system. An ideal 

flood diversion scheme is obtained. Lv et al. (2011) proposed a 

two-stage inexact joint-probabilistic programming (TIJP) meth- 

od based on two-stage stochastic programming and interval 

mathematical programming, which was effectively applied to 

controlling air pollution problems. Among them, many models 

are mixture of ILP and fuzzy or stochastic programming. 

However, the above-mentioned inexact programming mod- 

els are based on a coarse time scale. Either probability distribu- 

tion or interval is estimated on the entire time span of the plan- 

ning period. Uncertainty is time variant in most cases. Take 

rainfall for example; it is a different stochastic event under wet 

or dry seasons within a year. Based on a coarse scale, under- 

estimation or overestimation may occur for a finer scale. In this 

case, a coarse time scale can lead to an unrefined optimization 

policy. As shown in Figure 1(a), the solution space with a rough- 

er range is obtained. Those models take a high risk at lower 

time resolution in terms of optimality and constraint violation, 

resulting in poor performance and even failure of EMS. Hence 

it is necessary to propose a small-scale model to obtain a more 

refined solution space, as shown in Figure 1(b). The solution 

space on each small scale is more accurate, which will be of 

help to decision making, and optimization. 

Therefore, optimization under time variant uncertainty is 

investigated and the stochastic process is introduced into LP 

model, shaping into a time variant ILP model (TVILP). Its mo- 

tivation results from the following features in real life: (1) the 

distribution is hard to be acquired due to physical or practical 

constraints, and (2) the distribution is not stable and instead 

changes as time goes by. It is assumed that our method lack 

such distribution information. The only input is the informa- 

tion about the intervals under stages and the transfer distribu- 

tion between stages. The transfer distribution does not mean 

that the distribution of interval variables is known. For exam- 

ple, the distribution between seasons can be estimated; how- 

ever, the specific seasonal or yearly precipitation distribution 

remains unknown. 

For most EMS, uncertainty is likely to approach station- 

ary when downscaled to a short period, though the specific dis- 

tribution is still unknown. The segmented scales determine a 

temporally consecutive sequence of stationary sub-ILPs, which 

are linked to the objective function through transition proba- 

bility matrix. Further, an algorithm based on TSM (Huang et al., 

1992) and dynamic programming method is proposed to solve 

TVILP if the transition follows the law of Markov chain. 

The rest of this paper is organized as follows. Section 2 re- 

views the ILP optimization model and some selected solutions. 

Section 3 explains the motivation for the current paper, while 

the formal definition of TVILP model is given in Section 4. 

Section 5 provides a fast-approximate algorithm for Markov- 

chained TVILP, followed by a summary of synthetic experi- 

ments described in Section 6. Section 7 concludes this paper. 

 

 
 

Figure 1. Process of different scale LP model: (a) Process of 

general LP, and (b) Process of a small scale LP. 

2. Review of ILP 

Uncertainty could be depicted by probability distribution, 

membership function, or interval. This paper focuses on inter- 

val uncertainty due to its loose hypothesis. In ILP, the coeffi- 

cients are intervals whose upper and lower bounds are given, 

denoted by superscript “±”. They could be any values within the 

intervals. Equation 1 shows the general form of ILP in EMS: 

 

Optimize:  f X C X    (1a) 

 

subject to:  

 

 (1b) 

 

 (1c) 

 

where X± = {x± 

j }n×1, C± = {c± 

j }1×n, A± = {a± 

ij }
m×n, b± = {b± 

i }m×1, n 

and m refer to the number of decision variables and constraints, 

  A X b  

  0,     j jx x X   
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respectively. 

For a deterministic combination of coefficients cj, aij and 

bi, Equation 1 becomes a traditional LP problem. An irregular 

polyhedron is obtained if all the possible combinations are taken 

into consideration, which is called ILP decision space (ILPDS). 

Some methods (Hladik, 2012a, 2012b) are developed to find 

ILPDS. The algorithm in (Hladik, 2012a) decomposed Equa- 

tion 1 into 2m sub-problems, which was improved by employ- 

ing Beaumont formula (Hladik, 2012b) into a polynomial time 

algorithm. 

Decision variables in the polyhedron ILPDS are interde- 

pendent, thus the solution is not straight for decision-makers of 

EMS, especially when there are quite a few decision variables. 

In engineering-oriented practice, many methods (Huang et al., 

1992; Chinneck and Ramadan, 2000) decoupled the solution 

space from polyhedron to a hypercube with dependency re- 

moved. Best and Worst Analysis (BWS) (Chinneck and Rama- 

dan, 2000) solves two extreme sub-ILPs, outputting the upper 

and lower bounds of each decision variables. A hypercube is ex- 

panded with decision variables sampled independently in their 

intervals. 

It is demonstrated that part of the solutions in the decision 

space of BWS violate constraints, rendering high economic or 

social costs. Hence, a TSM (Huang et al., 1992) was proposed 

to mitigate constraint violation, which derived two improved 

sub-ILPs (Equations 2 and 3) from the initial ILP Equation 1: 

 

Optimize:  (2a) 

 

subject to: 

 

   

  
      

p
ij ij jj J

sign a a x


  


   

   

        
n

ij ij j ij J
sign a a x b


   


      (2b) 

  

  1,  2,  ,  i m K   (2c) 

 

 (2d) 

 

where the superscripts + and  denote the upper and lower 

bounds of the interval, respectively. The function sign(a ± 

ij ) 

equals to 1 if a+ 

ij  ≥ a 

ij  ≥ 0 and 1 if a- 

ij ≤ a+ 

ij  ≤ 0. Jp and Jn are the 

subscript sets if c+ 

j  ≥ c- 

j  ≥ 0 and c- 

j  ≤ c+ 

j  ≤ 0, respectively. 

Suppose that x+ 

jopt and x- 

jopt are the solutions of ILP Equa- 

tion 2, and then the other ILP Equation 3 will be obtained: 

 

Optimize:    
p n

j j j jj J j J
f c x c x    

 
       (3a)

  

subject to:  

 

    
       

p
ij ij jj J

sign a a x


  


   

          
n

ij ij j ij J
sign a a x b


   


      (3b) 

  1,  2,  ,  i m K  (3c) 

 

 (3d) 

 

The two sub-ILPs above are traditional LPs, which can be 

solved by the simplex method. Sub-ILP Equation 2 corresponds 

to the optimistic one while Equation 3 is the conservative one. 

Many TSM-based methods, such as MILP (Modified Interval 

Linear Programming; Zhou et al., 2008), ThSM (Huang and Cao, 

2011), RTS (Robust Two Step Method; Fan and Huang, 2012), 

and IRLP (Interval Recourse Linear Programming; Chen et al., 

2015) were developed to further sidestep constraint violation. 

3. Motivation 

The interval parameters in the ILP model are estimated or 

predicted by the historic data. In this section, the precipitation 

from 2008 to 2014 at the city of Binzhou, Shandong province 

of China (Meng, 2016) is chosen and some statistical parame- 

ters are examined. 

Figure 2 shows the precipitation distribution of different 

time scales. There exists a certain pattern for yearly distribu- 

tion in the top of the figure. Therefore, a year-scale ILP can be 

solved. However, it may not be feasible in some cases. For ex- 

ample, if the government plants trees according to precipitation, 

and the growth period of the tree is one month which only de- 

pends on the rain, only the annual rainfall and determine the 

number of trees planted in the year can be estimated and deter- 

mined. However, the number of trees planted per month re- 

mains unknown. Moreover, if the year 2009 is selected as an 

example, it can only be discerned that the precipitation varied 

seasonally. There was nearly no precipitation in the winter while 

the summer experienced many rainy days. Comparing May with 

July, one can find that there were more wet days in the former 

month, although with weaker intensity. Therefore, if the num- 

ber of trees is distributed on a monthly basis, Figure 3 shows 

the ideal precipitation and the actual precipitation per month, 

which may result in the death of seedlings and economic loss- 

es. Therefore, a small-scale ILP problem is needed. 

Tables 1 and 2 present the statistical results at two-time 

scales  year and month. In Table 1, “cor” represents the cor- 

relation coefficient of last year. Most of the correlation coef- 

ficients are over 0.9 except the 100-year-recurrence rainstorm 

in 2011, which validates the similar pattern over yearly distri- 

bution in Figure 2. The “sum” variable, representing the total 

precipitation each year, floats around 438.6 on average of sev- 

en years with standard deviation 44.5. Although the summed 

volume seems to fluctuate within 10%, “ave” and “stdev”, which 

denote the average and standard deviation over twelve months, 

indicate an over 100% fluctuation as far as the monthly precip- 

itation is concerned. 

Table 2 illustrates the previous conclusion. “avg” and “stdev” 

in Table 2 denote the mean and standard deviation of the pre- 

cipitation at monthly scale over seven years. The precipitation 

of a single month fluctuates with a smaller magnitude. How- 

ever, the stochastic processes behave differently at monthly 

  (   )  (   )
p n

j j j jj J j J
f c x c x    

 
    

  0,    ,    0,    j p j nx j J x j J    

    0,    ,    ,    jopt j p j jopt nx x j J x x j J       
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Table 1. Statistics at Yearly Scale 

Statistics 2008 2009 2010 2011 2012 2013 2014 

sum  454.50 406.10 358.00 482.30 502.10 439.10 427.80 

ave 37.86 33.84 29.83 40.19 41.84 36.59 35.65 

stdev 50.40 45.70 37.80 68.20 63.80 48.90 45.50 

cor –  0.94  0.93  0.85  0.62  0.93  0.90 

autocor-1st 0.71 0.73  0.65  0.41  0.50  0.62  0.69 

autocor-2nd 0.15 0.15  0.17  -0.01  0.12 0.08 0.20 

 

Table 2. Statistics at Monthly Scale 

Statistics Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Oct. Sep. Nov. Dec. 

ave 0.00 0.00 0.04 3.04 43.70 113.78 140.68 84.50 10.33 41.70 0.77 0.00 

stdev 0.00 0.00 0.10 1.96 17.85 49.70 42.55 25.18 5.66 15.92 1.25 0.00 

cor – – – 0.55 0.02 -0.06 -0.61 0.43 -0.20 -0.60 -0.64 – 
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Figure 2. Precipitation distribution of different time scales. 

 

scale and the correlation coefficients “cor” between two con- 

secutive months are lower than 0.6, particularly for May, June 

and September. The precipitation distribution within one year 

exhibits different stochastic processes when downscaled month- 

ly. Each stationary period corresponds to a different program- 

ming model. Meanwhile, the statistics of the precipitation on 

yearly scale may overestimate or underestimate the average 

monthly precipitation, resulting in constraint violation or re- 

gressive optimality. A refined optimization policy should be 

based on smaller granularity. 

The last two rows of Table 1 show the first-order and 

second-order autocorrelation coefficients, respectively. Among 

all the seven years, the first-order autocorrelation coefficients 

are almost five times larger than the second-order ones. There- 

fore, the precipitation has first-order Markov property to some 

extent. That is, the precipitation depends much more on that of 

the previous two or more periods. The Markov chain can be 

used to model such stochastic process. 
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In addition to precipitation, many other environmental fac- 

tors such as the length of sunshine and temperature, could lead 

to uncertainty. Meanwhile, the uncertainty often involves mul- 

tiple stochastic processes. Therefore, when EMS problem in- 

volves these factors and a coarse-scale stochastic process jeop- 

ardizes the optimality and constrain satisfaction to describe un- 

certainty, it is necessary to propose a model of time variant ILP. 

 

 
 

Figure 3. Ideal and actual precipitation in 2009. 

4. Time Variant ILP Model 

Because optimization problems involve multiple stochas- 

tic processes in its lifetime, policies should be time variant. Such 

refined decision helps decrease risks and improve practicality 

by tracking the dynamics in EMS. 

Assume that T is the time span of planning period and X(T) 

is the vector of decision variables for the optimization prob- 

lem. If a stochastic variable is stationary during T, the optimi- 

zation problem can be modeled as Equation 1. Considering time 

variance, assume that N is the number of stationary periods and 

the kth stationary period lasts for tk, which satisfies ∑N 
k=1tk = T. 

In order to achieve the optimization, a temporally consecutive 

sequence of stationary sub-ILPs is obtained after being down- 

scaled to tk. 

In terms of the optimization process, X(T) is divided into 

additive for a certain kind of stationary period during 

tk, which is denoted by t t, and ( ) k ks X s is obtained by the mod- 

el of a sub-ILP formulated as Equation 4: 

 

Maximize:  (4a) 

 

subject to:  

  

 (4b) 

 

 (4c) 

 

When there is only one kind of stationary period during 

tk, X(T) is composed of t( ).kX s However, there are multiple 

kinds of stationary periods in EMS in reality. Assume that tks

denotes the set of all possible kinds of stationary periods during 

tk and
tk

is


denotes the ith one, where tks is the size of set t .ks

The optimal path from t1 to tN has to be determined. 

Equation 4 provides a solution space for X(T) of smaller 

granularity. X(T) is the combination of sub-solutions in the con- 

secutive periods tk. To support decision making, TVILP mod- 

el needs to find a most-likely path. The TVILP model is given 

as Equation 5:  

 

Maximize:       1

1
, ..., N k k

N
t t t t

i i i ik
f P s s C s X s    


    (5a) 

 

subject to: 

 

     1 1 1 1 1,t t t t t

i i i iA s X s b s s S           

M  

      ,N N N N Nt t t t t

i i i iA s X s b s s S            (5b)

  

( ) 0, ( ) ( ),k k kt t t
i ix s    x s   X s      and 1, 2, ,k  =    NK   (5c) 

 

  k kt t
is S   and   1,  2,  ...,  kti S   (5d) 

 

In fact, Equation 5 contains two optimizations. One is X 
t( ),k

is 
 simply determined by sub-ILPs and defined as Equa- 

tion 4, while the other is the path < 1 2,  ,  ,
t t

i is s
 

K
t
N

is


>, which 

depends on the transition probability: 

 
1( , )Nt t

i iP s  ..., s    

1 1 1 1 ( | ,  ...,  )  ( ,  ...,  )N N Nt t t t t
i i i i iP s s s P s s        

 
1 2 1 1 1 ( )  ( | ) ... ( | ,  ...,  )N Nt t t t t t

i i i i i iP s P s s P s s s        

 1 1

1

, ..., (6)k k

N

t t t

i i i

k

P s s s  



  

 

where 1
1( |  ,  ... ,  )

t tk k t
i iP s s s
    is the transition probability. The 

current period is related to all the previous stationary periods. 

If the transition probability matrix is known, P < 1 , ..., 
tt
k

i is s


> 

will become computable. 

It is assumed in this model that there is no cross impact 

between decision variables of individual sub-ILPs. Otherwise, 

the constraints of the sub-ILPs involve the previous decision 

variables. Equation 5 guarantees that the feasible field of de- 

cision variables is constraint violation free for any stationary 

periods. 

The transition probability matrix reveals the interaction be- 

tween sub-ILPs. The optimums of two succeeding sub-ILPs may 

be linked by weak transition probability. Consequently, those 

sub-ILPs should be excluded from X(T). 

If <
1 2,  ,  ... ,

tt t Ns s s
 

   > is the optimal path, then X(T) = ∑N 
k=1 X

is obtained. 

Compared with the ILP model of Equation 1, the number 

of decision variables increases by N times and that of con- 

straints in Equation 5 increases by  *1
.kN t

k
s

 The model be- 

comes much more complicated due to smaller time granular- 

ity. Therefore, a refined optimization policy can be generated. 

( )ktX s

( )  ( )  ( )k k kt t tf s C s X s    

( )  ( )  ( )k k kt t tA s X s b s     

  0,     ( )kt

j jx x X s   ( )
tk

s
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5. Viterbi-Based Algorithm for  

Markov-Chained TVILP 

5.1. Algorithm Description 

TVILP is of high computational cost, as the transition pro- 

bability matrix involves a large number of possible paths. The 

time complexity of solving TVILP is O 1 2(| | | | |t ts s   L
 

|).Nts  

Many real-world situations, such as regional climates and 

rainfall, indicate that the most recent samples have more im- 

pact on the transition (Mieruch et al., 2010; Yoo et al., 2016). 

This is also validated in Section 3. It is of Markov property if 

the stationary period only depends on the elapsed one, i.e., 
-1 -11( , ..., ) ( ).k kk k

t tt tt

i i i i iP s s s P s s
    Therefore, the Markov chain is 

a stochastic process that satisfies two hypotheses. Specifically 

speaking, the probability distribution of the system state t + l is 

only related to state t, and state transition at t + l is inde- pendent 

of the value of t. Since the Markov chain has a good predictive 

effect on the state of the process and all possible transitions 

generate a Markov chain, Equation 6 becomes - 1 1( , ..., )kk
tt t

i i i
P s s s

   
- 1

= 1
P( ).kk

ttN

k i i
s s


  

Besides, addition in Equation 5 could be equivalent to mul- 

tiplication, i.e., ∑N 

k=1{C±( ) ∙  X( )}  N 

k=1{C±( ) · X( )}. By 

substitution, the Markov-chained TVILP model could be for- 

matted as Equation 7: 

 

Maximize:  (7a) 

 

subject to: 

 

     1 1 1 1 1,t t t t t

i i i iA s X s b s s S           

M  

      ,N N N N Nt t t t t

i i i iA s X s b s s S            (7b) 

  

( ) 0, ( ) ( ), and 1, 2, ...,k k kx t x t X t k N        (7c) 

 

  k kt t
is S   and   1,  2,  ...,  kti S   (7d) 

 

Figure 4 demonstrates the transitions in Markov-chained 

TVILP. Two hypothetical stationary periods, so (before plan- 

ning) and sd (after planning) are added for describing the algo- 

rithm. Related transition probability is defined as 1 1 1 1

0( ) ( ),
t t t t

i i iP s s P s s S   
   

1 1 1 1

0( ) ( ),
t t t t

i i iP s s P s s S   
    and 

1( ) 1, .N Nt tt

d i iP s s s S     

The symbol TVILP(so) is adopted to denote the problem of 

Equation 7. To solve TVILP(so), it is necessary to solve sub- 

problems TVILP 1( )
t

is prior to the boundary problems TVILP 

( ).Nt

is
 The scale of stationary periods caused by TVILP(so) is N, 

while by TVILP ( )Nt

is
 is 1. 

TVILP involves two uncertainties which are the stochas- 

tic transition and interval fluctuation. The former will be ad- 

dressed by maximum likelihood method while the latter will be 

solved by TSM described in Section 2. A dynamic program- 

ming algorithm based on the idea of the Viterbi algorithm is 

developed to solve the Markov-chained TVILP, where back- 

ward computation is used to deal with sub-problems recursive- 

ly and backtracking is further used to find the optimal path. 

 

so  
   

   

 
   

   

 
   

   

 
   

   

sd

       

       

       

 1tS  2NtS  1NtS  NtS

 1( )tsP  
 1( )N Nt ts sP  

1 2( )N Nt ts sP
 

 

Figure 4. Transition in Markov-chained TVILP. 

 

For stochastic transition in Markov-chained TVILP, the 

Viterbi algorithm is harnessed to find the maximum likelihood 

path with respect to a certain criterion. The criterion is defined 

by a function G(C±( )kt

is
 · X ( )kt

is
 ), which can be customized ac- 

cording to trade-off between constraint satisfaction risk and op- 

timality. For instance, the conservative may prefer a path which 

ensures the maximal profit in the worst-case scenario by let- 

ting G(C±( )kt

is
 · X ( )kt

is
 ) = f . f  is obtained by solving Equa- 

tion 3. 

Two recursive functions Q and V are defined based on the 

alternative forms of objective function Equation 7. Q in Equa- 

tion 8 represents the expected accumulative sum of G function 

for TVILP ( )kt

is
 based on TVILP 1( ).kt

is  V of Equation 9 returns to 

the optimum, and the maximum likelihood stationary period

*
kts

 is recorded in E in Equation 10: 

 

  

 (8) 

 

 (9) 

 

 (10) 

 

In fact, Equations 9 and 10 define a series of new LP prob- 

lems starting from tN and generate a maximum likelihood path 

< >. At each stationary period , a traditional ILP 

<A±( ), b±( ), C±( )> is constructed as Equations 1 to 3 and 

further solved by TSM mentioned in Section 2. The complete 

algorithm in pseudo code is given in Algorithm 1. 

Assume that there are M stationary periods during tk at 

the maximum. Since the Viterbi algorithm is based on dynam- 

ic programming, the time complexity of this algorithm de- 

creases to O(M 
2N) and its space complexity increases to O(MN). 

It returns a temporal sequence of decision variables. Their val- 

ues depend on the small-scale stationary periods of maximum 

likelihood. In contrast, the values of decision variables in tra- 
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ditional ILP are on a coarse scale, unaware of time variance. 

Consequently, the algorithm proposed in current paper can sup- 

port more refined decision-making or reliable optimization. 

 

Algorithm 1. Viterbi-based Algorithm for Markov 

Chained TVILP 

Input: 

  

 

Output: 

  

 

1: ARRAY V; ARRAY E; QUEUE XQ; 

2:  for (k = N; k >= 0; k – – ) do 

3:     for  do 

4:        Solve LP problem below: 

         Maximize ; 

         s.t.  

5:        for  do 

6:            

7:           if  then 

8:      ; 

9:             ; 

10:          endif 

11:       endfor 

12:    endfor 

13: endfor 

14: ; 

15: for (k = 1; k >= N; k + + ) do 

16: Solve ILP problem below by TSM: 

       Optimize  

       s.t.  

17:    ; 

18:    XQ.enqueue ; 

19:    ; 

20: endfor 

21: return and XQ ; 

 

5.2. Theoretical Analysis 

TVILP model takes into account the transition probability 

between states. TVILP model uses a heuristic algorithm to ob- 

tain the maximum likelihood path. The profit sum of different 

paths is different, and so is the corresponding path possibility. 

There are three precipitation states during Δti, namely, high sh, 

medium sm, and rare sr. There exists a probability distribution 

{Pr(sh), Pr(sm), Pr(sr)} over the possible states. The profit at 

state sh will be obtained with probability Pr(sh); the profit at state 

sm will be obtained with probability Pr(sh) + Pr(sm), and the 

probability of the profit at sr is Pr(sh) + Pr(sm) + Pr(sr). Hence, 

the state cumulative distribution function (CDF) gives accu- 

mulated probability for precipitation S ≥ s. Then CDF(S ≥ sh) = 

Pr(sh), CDF(S ≥ sm) = Pr(sm), and CDF(S ≥ sr) = Pr(sr) is 

offered. 

Definition 1. Path Accumulated Profit (PAP): for a cer- 

tain path pth from start state to end state, we have PAP(pth) = 
th Profit( ).s p s  

Definition 2. Path Confidence Level (PCL): for a certain 

path pth from start state to end state, we have PCL(pth) = 
thmin CDF( ).s p S s   

CDFi corresponds to the most likely state with PAP – Σij = 1 

Profit ( )jt
s


maximized for the pair (Profiti, CDFi) at Δti(1 ≤ i ≤ 

N) stage, which is the maximum value in the current stage. For 

the current decision, the algorithm tries to choose the path 

according to max 1

1 ( )Profit( ).jj j

j i

N t t tP s s s

 

   Then for the pair 

(Profiti+1, CDFi+1) at Δti+1(1 ≤ i ≤ N) stage, the CDFi+1 still reaches 

the maximum value in the next state. Because the TVILP mod- 

el is to select the most likely path, the PCL is still the highest. 

6. Experiments 

A synthetic scenario is used to validate the proposed algo- 

rithm. The government of Binzhou intends to improve the lo- 

cal environment, by planting two kinds of trees every year. Un- 

der the limited financial budget, the government must decide 

how many saplings to buy for the incoming year, so that the to- 

tal profit can be maximized. For simplicity, it is assumed that 

the growth cycle of the two kinds of trees is one month and on- 

ly depends on the precipitation. Once sufficient water is sup- 

plied, the trees can survive. Thus, the volume of precipitation 

is one constraint when making decisions. In addition, the year- 

ly rate of green land should be kept at or above a certain level. 

The notations and values of relevant parameters are given in 

Table 3. 

Most parameters in Table 3 are interval-values due to un- 

certainty. The precipitation is estimated based on the histori- 

cal records described in Section 3. Because the rainfall uncer- 

tainty is time variant, 12 periods (t1, t2, …, t12) are divided 

as per calendar month for simplicity. 

Referring to the analysis in Section 3, the precipitation can 

be categorized into rainless, rainy, pluvial, and flooding peri- 

ods, which are denoted by sl, sm, sh and sr. Their correspond- 

ing interval values are [0.0, 10.0], [35.0, 52.0], [63.0, 98.0] and 

[116.0, 140.0], respectively. According to the seasonal feature 

of precipitation, Markov chain model of precipitation is ob- 

tained as shown in Figure 5. The parameter of green land rate 

GLR is also redefined at a smaller scale, given in Table 4. 

 

6.1. Experimental Result 

The optimization model at a coarse scale could be formu- 

lated as Equation 11: 
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Figure 5. Markov chain model of precipitation. 

 

       Table 3. Notations and Values of ILP Parameters 

Notation Value Unit Description 

Ax   decision variable  the number of saplings A 

Bx   decision variable  the number of saplings B 

AC  [20.0, 35.0] $ the net profit per plant A 

BC  [-13.0, -6.0] $ the net profit per plant B 

AW   [3.8, 4.0] m3 the water demand of plant A 

BW   [0.5, 0.8] m3 the water demand of plant B 

Prec  [394.0, 482.0] mm the precipitation per year 

iPrec  [0.0, 140.0] mm the precipitation of ith month 

AGC  [2.8, 4.2] m2 the green coverage of plant A 

BGC  [1.6, 2.5] m2 the green coverage of plant B 

GLR  [60.0, 70.0] % the rate of green land 

AREA  10,000.0 m2 the area of planting field 

 

      Table 4. Green Land Rate at A Smaller Scale (%) 

GLR ∆t1 ∆t2 ∆t3 ∆t4 ∆t5 ∆t6 ∆t7 ∆t8 ∆t9 ∆t10 ∆t11 ∆t12 

Period  Jan.  Feb.  Mar.  Apr.  May   Jun.   Jul.  Aug.  Sep.   Oct.  Nov.   Dec.  

Sl 0  0  0  0   -   -   -   -   7   5   0   0 

Sm 0  0  0  0   8   10   -   11   10   -   0   0 

Sh 0  0  0  0   10   12   -   15   -   -   0   0 

Sr 0  0  0  0   -   14   17   -   -   -   0   0 

 

   Tble 5. Decision Space based on Markov-chained TVILP 

Periods 
f + f - 

Ax
 Ax

 Bx
 Bx

 Ax
 Ax

 Bx
 Bx

 

∆t1 0  0  0  0 0  0  0  0 

∆t2 0  0  0  0 0  0  0  0 

∆t3 0  0  0  0 0  0  0  0 

∆t4 0  14  0  0 0  14  0  0 

∆t5 113  149  305  398 63  87  156 199 

∆t6 189  215  456  528 159  178  302  387 

∆t7 222  259  527  607 222  259  527  607 

∆t8 153  174  395  449 153  174  395  449 

∆t9 78  103  212  331 78  103  212  331 

∆t10 0  26  0  0 0  26  0  0 

∆t11 0  0  0  0 0  0  0  0 

∆t12 0  0  0  0 0  0  0  0 
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 (11b) 

 

 (11c) 

 

 (11d) 

 

Figure 6 presents the optimization result of model Equa- 

tion 11 using TSM, which is described in Section 2. The black 

solid lines denote the two constraints of sub-ILP Equation 2, 

while the black dotted lines are constraints of sub-ILP Equa- 

tion 3. (998, 1281) and (652, 2663) are the solutions of the two 

sub-ILPs, which further generate the decision space (xA  [652, 

998], xB  [1281, 2663]) as the red rectangle shows. The maxi- 

mal profit under the optimistic case (998, 1281) is 27,244, while 

under the pessimistic case, it is -21579. 
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Figure 6. Optimization result at a coarse scale. 

 

This problem is modeled as a Markov chained TVILP based 

on Table 4 and Figure 5, which is solved by the proposed algo- 

rithm. Two kinds of function G are tested, that is, f  and f + of 

each small scaled ILP. In Figure 5, the lines in blue is the path 

when using f , whereas the red line is the path using f +. Those 

two definitions represent pessimistic and optimistic attitudes to- 

wards decision-making. Take the transition between t5 and t6 

for example, the optimistic one takes risk of a less possible tran- 

sition due to the following high profit. The optimization mod- 

el at a fine scale could be formulated as Equation 12: 
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Figure 7. Optimality of three models. 
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Figure 8. Decision variables of three models. 

 

The final decision spaces are displayed in Table 5. It com- 

prises 12 time-divided sub-spaces, which are smaller in con- 

trast with that in Figure 6. By downscaling, refined optimiza- 

tion policies are obtained. In order to verify the effectiveness 

of the proposed algorithm, the optimality of the solutions by 

three models is studied: ILP, TVILP-f  and TVILP-f +, which 

symbolize the classic ILP model at a coarse scale, time-variant 

ILP model with likelihood criteria f  and f + respectively. Their 

decision spaces lead to intervals of profit. 

Figure 7 presents the profit intervals, which indicates that 

ILP model has the largest interval compared with TVILP mod- 

els. The maximal profit of ILP model entails a prediction that 

the monthly precipitation shall be maximal through the entire 

year. However, this probability is very small. The intervals of 

TVILP models are narrow, since only the most possible paths 

are considered. Besides, the likelihood criterion f  is more con- 

servative, leading to the smallest interval. 

TVILP models output more reliable decisions, less likely 

to violate the constraints. Figure 8 presents the decision vari- 

ables under the three models. The TVILP’s spaces for each de- 

          A A B BW x W x AREA Prec        

          A A B BGC x GC x AREA GLR       

  0,    0A Bx x  
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cision variable are only part of the ILP’s spaces. TVILP’s spaces 

are prepared for what is most likely to happen under uncertain 

circumstances. By downscaling, decision risk can be properly 

reduced. 

 

6.2. Result Analysis 

Since the coefficients in the objective functions and the con- 

straint functions are distributed over intervals, the decision var- 

iables are uncertain. This results in the risk of making uncer- 

tain decisions. Therefore, the performance of TVILP model is 

analyzed based on the following three metrics: Maximal profit 

(M_profit), Constraint violation risk (CVR), and Maximal pro- 

fit path risk (MPR). 

M_profit: It means the maximal profit in the generated de- 

cision space, which is formulated as Equation 13: 

 

 (13) 

 

where f(X) is the objective function, X is the decision variables, 

and DS is the decision space. 

CVR: It means the risk that solutions in decision space vio- 

late constraints. The higher the value is, the more infeasible so- 

lutions are. This metric reflects the feasibility of the decision 

space, which is calculated according to the percentage of infea- 

sible solutions, as shown in Equation 14: 

 

CVR = size(IDS) / size(DS)  (14) 

 

where DS is the decision space, IDS is the infeasible decision 

space, and size(*) is the scope of any decision space. 

MPR: Path risk is the risk caused by the decision making 

from coarse-scale to fine-scale. As shown in Figure 5, the prob- 

ability of a path corresponds to the risk at which the profit is 

obtained. There may be many different paths for obtaining prof- 

its; however, there usually exists one unique path to get the 

maximal profit. In order to facilitate the calculation and compa- 

rison, this paper uses the maximal profit path risk. This metric 

can be formulated as Equation 15: 

 

1

max max
=1

MPR = { ( )}kk

N
tt

k

P s s 
  (15) 

 

where
max

kts is the state that the maximal profit path has passed 

during the kth stage, and 1

max max( )kk
ttP s s  is the transition probabil- 

ity from 1

max
kts 

to max .kts This metric reflects the reliability of the de- 

cision space. If this value is smaller, the maximal profit can be 

obtained with greater probability; that is, the decision is more 

reliable. 

From the perspective of these three metrics, the TVILP 

model is compared with other models and algorithms. The se- 

lected models and algorithms are: Best and Worst methods 

(BWS) (Chinneck and Ramadan, 2000), the classic ILP model 

(ILP) (Huang et al., 1992), Interval linear programming con- 

tractor (ILPC) (Hladik, 2012a), Interval-parameter multi-stage 

stochastic linear programming (IMSLP) (Li et al., 2006). These 

four models are described in detail below: 

1. BWS: This method gets the best optimum and the worst opti- 

mum, and the point settings of the interval coefficients that 
yield these two extremes. It provides the range of the opti- 

mized objective function, and the coefficients settings of- 

fer some insights into the likelihood of these extremes. 

2. ILP: It has been described in detail in Section 2. 

3. ILPC: It proposes an iterative method that finds an enclo- 

sure of the set of optimal solutions, and this method is based 

on a linear approximation and sequential refinement. 

4. IMSLP: It corresponds to the lower and upper bounds of 

the desired objective in its solution process. It takes all pos- 

sible state transitions or paths into account and provides in- 

tervals of decision variables for each state. 

Among the aforementioned models, BWS, ILP and ILPC 

are coarse-scaled ones, while IMSLP and proposed model in 

the current paper are fine-scaled. However, as the IMSLP model 

assigns the decision variables to each state, its decision space is 

path-dependent. In contrast, our model only considers the most 

likely path. 
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Figure 9. Maximal profit among different models. 

 

6.2.1. Maximal Profit 

Figure 9 presents the maximal profits of different models. 

The maximal profits of BWS, ILP and ILPC models are the high- 

est. BWS and ILP contain larger decision space, and the case 

of ILPC is consistent with the optimal decision space. Take ILP 

for example; the point corresponding to the maximal profit lo- 

cates at the bottom-left of the red rectangle in Figure 6. It lies 

in the decision space of BWS and ILPC; therefore, ILP, BWS 

and ILPC can be used to obtain the maximal profit. The deci- 

sion space of all the possible paths can be calculated through 

the IMSLP model individually, including those paths of low 

possibility. Weighted averaging is performed based on the tran- 

sition probability when calculating the range of decision var- 

iables. M_profit of IMSLP model is lower than that of the BWS 

model by 17% while the maximal profit value of TVILP mod- 

el is lower than BWS model by 24 to 35%. This is because 

TVILP model only considers the most likely path, so that paths 

of higher profit but lower possibility are excluded. As for TVILP 

model, f + and f  represent optimistic and pessimistic attitudes 

M_profit  Max( ( )) f X X DS 
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towards decision-making. The optimistic one takes less risk of 

possible transition due to the following high profit. Therefore, 

the maximal profit of TVILP-f + is slightly higher than that of 

TVILP-f . 
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Figure 10. Percentage of infeasible solution of  

different models. 

 

6.2.2. Constraint Violation Risk 

Since there are only two decision variables in our experi- 

ment, the decision space is two-dimensional. In other words, the 

scope of the decision space can be represented by areas. As 

shown in Figure 7, the red rectangle represents the decision 

space, whose area is Areas = (x+ 

A  – x 

A )(x+ 

B  – x 

B ). The shadowed 

field is the feasible decision space, whose area is Areaf (calcu- 

lated by integral). The risk can be calculated by Equation 16: 

 

CVR = (areas – areaf) / areas   (16) 

 

The constraint violation risks of different models are giv- 

en in Figure 10. As its decision space is path-dependent, IMSLP 

cannot be generalized on a coarse scale if the path is non- 

deterministic. Thus, this model is not chosen in this experiment. 

In addition, the decision space obtained by the ILPC model con- 

tracts to polyhedric ILPDS without infeasible solutions, there- 

fore, it has no CVR. 

BWS has the highest constraint violation risks. This model 

simply considers the best solution and the worst solution, which 

leads to a large area of decision space. Many solutions violate 

constraints. Although ILP improves BWS based on simple trans- 

formation, its decision space is still large and its CVR is slight- 

ly lower. Compared with BWS, the risk of constraint violation 

risk for TVILP is reduced by 18 to 26%. TVILP divides into 

small-scaled decision problems and models those sub-problems 

by ILP. The sub-ILPs exist non-zero CVR. Nonetheless, TVILP 

only takes into consideration the most possible state of each 

stage as a result, its decision space usually lies at the center of 

ILP’s decision space as shown in Figure 8. Hence, its con- 

straint violation risk is much lower. 

 

6.2.3. Maximal Profit Path Risk 

The maximal profit is closely related to the monthly precip- 

itation, and the probability of the maximal profit path can be ob- 

tained in accordance with precipitation transitions. As shown in 

Figure 5, the monthly precipitation is divided into four catego- 

ries: sl, sm, sh, and sr, and the maximal profit corresponds to a 

path in the rainfall. BWS model was selected as the bench- 

mark and normalized the MPR of different models. The nor- 

malization process is shown in Equation 17: 

 

MPR of BWS
Normalized MPR =

MPR
 (17) 

 

Figure 11 shows the maximal profit path risk for different 

models after normalization. BWS, ILP, and ILPC have the same 

maximal profit path risk, because the maximal profit is ob- 

tained when the rainfall reaches its upper bound. Such proba- 

bility is very low as it demands the largest monthly rainfall. For 

IMSLP, its path is selected by the user, although there is a 

unique path wherein each stage has the largest rainfall and gets 

the maximal final profit. However, the risk of this path is as 

high as that of BWS, ILP, and ILPC, because the likelihood for 

the monthly rainfall reaching the largest throughout the whole 

year is very slim. The MPR of TVILP is about a quarter of the 

benchmark model BWS. TVILP model only considers the most 

likely state in each stage, and thus the corresponding maximal 
profit will occur with a higher probability. Conse- quently, 

its risk is much lower. Further, there is one slight dif- ference 
between TVILP-f + and TVILP-f . Making decisions in an 

optimistic way, TVILP-f + tends to choose a path with smaller 

transition probability but more profit. In contrast, TVILP-f  

makes decisions in a pessimistic way. 

 

6.2.4. Time Complexity 

BWS and ILP solve the interval linear programming prob- 

lem by converting it to two typical linear programming prob- 

lems. Simplex algorithm is a common way of handing typical 

linear programming problems. The time complexity of simplex 

algorithm is O(2n) if there are n variables. Accordingly, the time 

complexity of BWS and ILP is O(2n+1). ILPC runs in polyno- 

mial time. TVILP and IMSLP are both LP-based algorithms, of 

which the time complexity depends not only on the number of 

variables but also the number of states. The following experi- 

ment compares the complexity of TVILP and IMSLP. 
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Figure 11. Profit risk of different models. 
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Figure 12. Time consumption of IMSLP and ours. 

 

For Markov-chained TVILP, a dynamic programming- 

based algorithm is proposed, which has much lower time com- 

plexity. This section will validate it under the same scenario. 

Previous experiments have analyzed the precipitation in terms 

of four stationary stochastic processes, and the transitions be- 

tween the processes are shown in Figure 5. It includes 20 pos- 

sible paths in all, while our algorithm only contains 10 iterations. 

In order to further validate the time efficiency of our algo- 

rithm, more stochastic processes are divided. Figure 12 presents 

the time consumption of our algorithm and interval-parameter 

multi-stage stochastic linear programming under different num- 

ber of states. The iterations of our algorithm increase polyno- 

mial, while the interval-parameter multi-stage stochastic linear 

programming has exponential tend. 

Although our algorithm is time-efficient, too many states 

may make every path comparative and no overwhelming path 

exists. The decision space contracts to a small hyper-cube, which 

incurs more risk of constraint violations. This is the very issue 

we attempt to investigate in the future. 

7. Conclusion 

As for EMS, optimization technology has been common- 

ly applied in balancing the conflict between economic develop- 

ment and ecological improvement. The optimization approaches 

under uncertainty such as ILP models ask for a stationary sto- 

chastic process, whilst a coarse scale of planning often involves 

multiple different stationary processes. In actual use, many de- 

cision variables in small-scale ILPs are dependent on time such 

as precipitation and temperature and the probability of stochas- 

tic process occurring may be similar to that of Markov model. 

Therefore, a TVILP model has been proposed based on Markov 

process, an algorithm is further adopted to obtain the optimal so- 

lution. Contributions of this paper can be summarized as follows: 

1) Given the randomness of time variants, a Markov-chained 

TVILP model is developed, which provides a series of 

solutions at a smaller scale and supports more precise de- 

cision-making. Decision space contracts to a compact space 

which is oriented for the cases most likely to happen. In 

doing so, the constraint violation risks and path risk are 

decreased, thereby contributing to more feasible and reli- 

able decisions. 

2) A dynamic programming-based algorithm is proposed for 

Markov-chained TVILP, reducing the time complexity to 

polynomial one and improving its engineering friendliness. 

3) The usefulness of the TVILP model is validated with a 

specific precipitation EMS example and verify the effec- 

tiveness of Viterbi-based algorithm for Markov-chained 

TVILP through a series of experiments. 

It has to be admitted that there are two problems with 

TVILP. First, the original ILP is assumed to be dividable, and 

the decision variables are first calculated before considering 

other constraints. In some cases, however, sub-ILPs are inter- 

active, under which TVILP and its algorithm should be amend- 

ed. The other downside is the impact of the number of states on 

risk and optimality, and carrying out quantitative analysis of 

the impact is one direction for future studies. 
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