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ABSTRACT. Water resources system planning often exhibits high modeling error and uncertainty. Uncertainty in system parameters as 
well as their interrelationships can strengthen the conflict-laden issue of water allocation among competing interests. In this study, a non-
deterministic integrated optimization model with risk measure is developed for planning water resources management. It can (i) deal 
with complex uncertainties described as probability distributions, fuzzy sets, and their combinations, (ii) provide an effective linkage 
between the predefined policies and the associated economic implications, and (iii) reflect policymakers’ preferences to the tradeoff be- 
tween system benefit and economic loss. The developed model is then applied to planning water resources allocation of the Heshui River 
Basin (China), where 960 scenarios are analyzed under various uncertainty and risk measures. Results disclose that (i) not only uncertain- 
ties of fuzziness and randomness but also risk attitudes of decision makers have significant impacts on water-allocation scheme and sys- 
tem benefit; (ii) the selection of a suitable alternative among solutions under different α, μ and λ values is complicated; (iii) water shortage 
would occur when water availability is less than the promised target; (iv) agriculture would encounter most serious scarcity compared to 
municipal and industry; (v) the conflict between economic development and agricultural sustainability would be a challenged issue that 
would enforce the local authority to adjust water-allocation policy. The findings can provide superior fundamental understanding of the 
study basin to improve water-allocation decisions under complex uncertain condition. 
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1. Introduction 

1.1. Importance and Motivation 
With population growth, economic development and cli- 

mate change, challenges on securing sufficient and clean water 
supply are amplifying. Climate change is closely related to var- 
iations in precipitation, temperature, evapotranspiration rate, 
and snow/glacier melting; these variations are amplified in hy- 
drological cycle, and consequently alter water resources avail- 
ability and allocation. Agriculture is the largest user of the 
world’s freshwater resources, consuming yearly 70% of all ab- 
stracted water and resulting locally in severe water scarcity 
(Mouratiadou et al., 2016). Water also plays an important role 
in almost every stage of energy development (including extrac- 
tion, production and processing of fossil fuels, electricity gen- 
eration, and treatment of wastes from energy-related activities). 
By 2030, water demand is expected to increase by 40%, energy  
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by 50% and food by 50% in respect to 2010 levels; approxi- 
mately 75% of the world’s population will face water scarcity 
in future (Martinez-Hernandez et al., 2017). It is challenging to 
effectively plan and make optimal utilization of limited water 
resources to meet current and future demands for socioeconom- 
ic sustainable development, which calls for novel approaches 
that involve the diversification of water-supply options and the 
effective management of water resources (Bichai et al., 2018). 

The fundamental goal of water resources planning is to 
match water demand by the socioeconomic activities with the 
supply of water through administrative control and manage- 
ment (Li et al., 2011; Dong et al., 2013). Optimization is recog- 
nized as a powerful tool for investigating economic benefit of 
policy decision and for planning water resources system in an 
effective and efficient way. Nevertheless, achieving a preferred 
water resources allocation strategy is difficult since social and 
institutional systems as well as the economics of water use are 
interconnected, and continuously varying, while many conflic- 
ting factors have to be balanced due to complexities of the real-
world problems. A noteworthy complexity is the inherent uncer- 
tainty and the intrinsic risk involved with such water manage- 
ment practices. Uncertainty can be existed in observation data, 
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data processing, parameter estimation and model structure, due 
to the inherent unpredictability of system and simplification in 
model formulation. Climate change is likely to be predictable 
over the next century due to consistently increasing greenhouse 
gas emissions, which can bring more complexities and uncertain- 
ties for water resources predication and allocation (Su et al., 
2021). Understanding how water resources system would be 
affected by various uncertainties is important for developing 
desired management strategies (Li et al., 2008; Ewertowska et al., 
2017; Moeini and Soltani-nezhad, 2020; Yu et al., 2020). 

 
1.2. Literature Review 

Many studies about non-deterministic models showed that 
uncertainties in water resources system have effects on the out- 
puts of simulation, optimization and decision making. Dunn et 
al. (2012) analyzed the impact of uncertainty in climate change 
on the relationships among water resources, land use and dif- 
fuse pollution. Borgomeo et al. (2014) tested the robustness of 
water resources management under uncertainty using stochas- 
tic weather generator to construct probability distribution of the 
frequency of future water shortage. Nazemi and Wheater (2014) 
investigated effects of uncertainty in the natural inflow regime 
that altered different parts of water resources system using sto- 
chastic analysis technique. Dutta et al. (2016) planed agricultu- 
ral water management and determined the optimum cropping 
pattern under fuzzy environment. Forio et al. (2017) analyzed 
the effect of the major environmental variables predicting eco- 
logical water quality through the application of fuzzy models. 
Hussien et al. (2018) presented a risk-based approach for the 
water, energy and food nexus considering the uncertainties as- 
sociated with supply-demand balance and seasonal variability. 
Ortiz-Partida et al. (2019) proposed a two-stage stochastic opti- 
mization model to maximize economic benefits from reservoir 
deliveries through integrating stochastic inflows into a water 
allocation system with multiple demands and various constraints. 
Ma et al. (2020) advanced an interval stochastic bi-level pro- 
gramming method for balancing the water-energy nexus trade- 
off between two-level decision makers under uncertainties ex- 
pressed as probability distributions and interval values. 

In general, fuzzy programming methods are effective in 
dealing with decision problems under fuzzy goal and constraints 
and handling ambiguous coefficients in the objective function 
and constraints (Huang et al., 2002; Li et al., 2010). Two-stage 
and multistage stochastic programming methods consider the 
expectation as the preference criterion while comparing the 
random variables to find the best decisions; consequently, it is a 
risk neutral approach. They focus on employing the expected 
values of the random variables; optimal solutions leading to a 
maximum system benefit (or a minimum system cost) can be 
achieved due to the maximization of economic benefit (or the 
minimization of cost) in the objective function. The possible 
loss is computed as the expected value of different probability 
conditions, such that the severity of extreme risks may be some- 
what underestimated. This may somewhat overlook the extreme 
effects as the minimization of the expected value can hardly 
guarantee minima under all probability levels. Decision-makers 
and stakeholders cannot agree on the full set of risks and con- 

sequences and the probability of their occurrences (Li et al., 
2010; Gaivoronski et al., 2012; Borgomeo et al., 2018).  

Conditional value-at-risk (CVaR) is a risk measure based 
on probability distributions of measure into fuzzy and stochas- 
tic optimization framework, which is capable of handling pos- 
sibilistic and probabilistic uncertainties as well as considering 
the potential economic loss (Piantadosi et al., 2008; Wang et 
al., 2017; Ji et al., 2020). Previously, a number of studies were 
reported on the application of CVaR risk measure to water re- 
sources management problems. Khor et al. (2014) introduced 
CVaR measure into a mixed-integer quadratic programming 
model to address risk management for an integrated water net- 
work synthesis problem. Hu et al. (2016) proposed a multi- 
objective optimization model with conditional value-at-risk 
constraints to consider water allocation equality in the agricul- 
tural, domestic, and industrial sectors. Soltani et al. (2016) for- 
mulated a conditional value at risk-based model for planning 
agricultural water management problem in association with un- 
certainties of probability and interval formats. Fu et al. (2018) 
proposed an interval CVaR two-stage stochastic programming 
model for reflecting the uncertainty of water system and the co- 
ordination between water allocation and risk preference under 
different representative concentration pathways scenarios. Na- 
serizade et al. (2018) proposed a stochastic model based on 
CVaR and multiobjective optimization for optimal placement 
of sensors in water distribution system with the minimization 
of risk. Khorshidi et al. (2019) used CVaR concept for reservoir 
operation management of Dorudzan basin (Iran), and results 
showed that the model can determine the operation policy that 
keeps the associated risks in the acceptable range.  

In general, in water resources management problems un- 
der non-deterministic condition, high risk is positively correlat- 
ed with high return as well as high loss. A risk-averse approach 
that considers the effects of the variability of random outcomes 
(e.g., random cost) would provide more robust solutions com- 
pared to a risk-neutral approach (Noyan, 2012; Li et al., 2017). 
Water resources management problems are not only affected 
by each individual type of uncertainty, but also complicated by 
the complex interactions of different uncertain components. Spa- 
tial and temporal variabilities in water availability are driven 
by complex natural factors (e.g., hydrologic cycle, water de- 
mand, and geographical feature of river system) as well as by 
various human factors (e.g., population growth, socio-economic 
development, water resource exploitation, and river manage- 
ment policy) (Li et al., 2011; Steinfeld et al., 2020). The error 
and uncertainty can be transferred from one modeling domain 
to another. The effects of inaccuracies in estimating the stream- 
flow can further extend to water allocation, system assessment, 
as well as management strategy, resulting in the corresponding 
risk of economic efficiency loss (Nazemi and Wheater, 2014; 
Fu et al., 2021; Zhai et al., 2021; Zhang et al., 2021). Therefore, 
one potential approach for better accounting for the uncertain- 
ties and the risks is to incorporate CVaR measure within the non-
deterministic optimization methods. 

 
1.3. Objective 

The objective of this study aims to develop (i) a non-deter- 
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ministic integrated optimization model with risk measure for 
tackling uncertainties of fuzziness and randomness and exam- 
ining decision makers’ attitudes toward risk aversion; (ii) apply 
the developed model to planning water resources allocation of 
the Heshui River Basin (in China), where results under multi- 
ple scenarios corresponding to uncertainty and risk levels will 
be obtained. Results will be analyzed to reveal how incorpo- 
rating a risk measure affects the optimal solutions and demon- 
strate the computational effectiveness of the proposed model. 
The rest of this paper is organized as follows. Section 2 describes 
the development of modeling formulation. Section 3 focuses on 
the case study (i.e. the approach for planning water resources 
allocation of Heshui River basin). Results for system benefit, 
CVaR cost, and water-allocation pattern under multiple scenar- 
ios are presented and analyzed in section 4. Finally, section 5 
discusses the key findings and presents main conclusions. 

2. Methodology 

Consider a problem wherein a water resources manager is 
responsible for allocating water to multiple users over a multi-
period horizon with the objective of maximizing the total net 
benefit. Given a quantity of water that is promised to a user, if 
this water is delivered, it will result in net benefits to the local 
economy; however, if the promised water is not delivered, ei- 
ther the water must be obtained from alternative and more ex- 
pensive sources or the demand must be curtailed, resulting in 
penalties to the local economy. The available water and the re- 
servoir-storage capacity are random variables, and the relevant 
water-allocation plan would be of dynamic feature. Multi-stage 
stochastic programming (MSP) is effective for reflecting uncer- 
tainties expressed as random variables through a multi-layer 
scenario tree, which permitted revised decisions in each stage 
based on the sequentially realized uncertain events (Birge and 
Louveaux, 1997; Li et al., 2006). Chance-constrained program- 
ming (CCP) can effectively reflect the reliability of satisfying 
(or risk of violating) system constraints under uncertainty (Huang, 
1998; Tan et al., 2011). Thus, based on MSP and CCP techniques, 
the study problem can be formulated as: 
 

1 1 1 1 1
Max

tKI T I T

it it tk it itk
i t i t k

f NB WT p EP WS
= = = = =

= ⋅ − ⋅ ⋅   (1a) 
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1
( ) ,  ;  1,  2, , 

I

it itk tk t
i

WT WS RF t k K
=

− ≤ ∀ =   (1d) 

 
,  ;  1,  2, , tk tST RSV t k K≥ ∀ =   (1e) 

1
,   1,  2, , 

Tk

Tk Tk T T
k

p ST ST k K
=

⋅ ≥ =   (1f) 

 
max min 0, , ;  1,  2, , it it it tWD WT WD i t k K≥ ≥ ≥ ∀ =   (1g) 

 
, , ;  1,  2, , it itk it tWT WS MIW i t k K− ≥ ∀ =   (1h) 

 
0, , ;  1,  2, , itk tWS i t k K≥ ∀ =   (1i) 

 
The detailed nomenclatures for the variables and the pa- 

rameters are provided in the Appendix. In detail, constraint (1b) 
presents the mass balance for water resources in each period 
(i.e., the change in storage equals inflows minus releases and 
evaporation losses), where the evaporation loss is assumed to 
be a linear function of the average storage of reservoir; con- 
straint (1c) specifies that the storage amount must not exceed 
reservoir capacity under all scenarios, where the storage capac- 
ities are fixed with a probability level that represents the admis- 
sible risk of violating the uncertain capacity constraints; con- 
straint (1d) means that the water allocated to users and surplus 
water diverted (when flow level is high) will not exceed the 
amount of water released from the reservoir; constraint (1e) re- 
quires that the reservoir’s storage cannot lower a reserve level 
under all scenarios; constraint (1f) stipulates that the expected 
final storage in the reservoir should not be below a specified 
target level; constraint (1g) indicates that water-allocation tar- 
get should satisfy the users’ minimum necessities but not ex- 
ceed their maximum requirements; constraint (1h) denotes that 
allocated water should meet the minimum requirement for each 
user; constraint (1i) stipulates that the water shortage is non-
negative.  

Model (1a ~ 1i) can reflect uncertainties with known prob- 
ability distributions; it is still unqualified when dual uncertain- 
ties of randomness and fuzziness are both existed. For example, 
the amount of available water may have statements expressed 
as “probably 350 × 106 to 380 × 106 m3” or “possibly 350 × 106 
to 380 × 106 m3”. This leads to dual uncertainties (randomness 
and fuzziness) due to the fact that decision makers express dif- 
ferent subjective judgments upon a same problem. In addition, 
vague information may exist in economic data and technical 
data of objective function and constraints. Fuzzy programming 
(FP) based on fuzzy set theory, which serves as a useful mathe- 
matical tool to facilitate the description of complex and ill-de- 
fined systems, is effective for quantifying the vague informa- 
tion without the sample size requirement (Zadeh, 1975; Inuigu- 
chi and Tanino, 2000; Li et al., 2010). The general notation of 
a fuzzy set can be presented as follows (Zimmermann, 1995): 
 

( ) { , ( )   and ( ) [0,1]}A AA x x x x X xμ μ= ∈ ∈ 
  (2) 

 
where X = {x} is a universe set of elements; A(x) is a fuzzy set 
of X; ( )A xμ  is the membership function or grade of member- 
ship. The ( )A xμ  value ranges from 0 to 1, where 1 represents 
full membership and 0 denotes non-membership. The member- 
ship function of any fuzzy set A may conveniently be expressed  
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Figure 1. Outline of the developed model. 
 
for all x X∈ in canonical form (Dubois and Prade, 1986): 
 

( )     when [ , ),
1            when [ , ],

( )
( )    when ( , ],

0           otherwise.

A

A
A

f x x a b
x b c

x
g x x c d

μ

∈
 ∈=  ∈







 (3) 

 
where a, b, c, d ∈ X and a ≤ b ≤ c ≤ d, Af  is a real-valued func- 
tion that is increasing and right-continuous, and Ag  is a real-
valued function that is decreasing and left-continuous. An α-
cut is defined as the set of elements that belong to fuzzy set A 
at least to the degree of α that is also called the degree of con- 
fidence or the degree of plausibility. The α-cut can be described 
as follows (Zimmermann, 1995): 
 

{ ( ) ,  }AA x x x Xα μ α= ≥ ∈
  (4) 

where Aα
 is the α-cut level of A, and it consists of all compo- 

nents of X whose membership grade is greater than or equal to 
α. The support of fuzzy set A is defined by the classical set as 
follows: 
 
supp( ) { ( ) 0}AA x xμ= >

  (5) 
 

The convexity condition ensures that the support is in an 
interval. To handle decision-making problems in association 
with randomness and fuzziness, FP can be introduced into the 
framework of model (1a ~ 1i). Thus, we have: 
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whereitNB and itEP are fuzzy coefficients in the objective func- 
tion,ϕ is fuzzy tolerance measure ( 0 1ϕ≤ ≤ ), andtkWQ is fuzzy- 
random variable. To solve the above model, vertex analysis, 
based on the α-cut concept and interval analysis, can be used 
for computing functions of fuzzy variables. Using the concept 
of α-cut, each fuzzy variable can be converted into a group of 
intervals with various α levels. The detailed definitions related 
to vertex analysis can be found in a number of literatures (Dong 
and Shah, 1987; Chen et al., 1998; Li et al., 2010).  

Model (6a ~ 6i) can reflect coefficients (in both objective 
and constraints) in association with fuzzy and random features; 
nevertheless, solutions of model (6a ~ 6i) can bring about tre- 
mendous losses when an extremely adverse condition occurs. 
CVaR is useful for examining the risk loss under specific prob- 
abilistic distributions (Andersson et al., 2001). CVaR is defined 
as the mean loss, given that the loss is greater than or equal to 
value-at-risk (VaR), which can be used in the conjunction with 
VaR and is applicable to the estimation of risks with non-sym- 
metric return-loss distributions (Rockafellar and Uryasev, 2002; 
Soleimani and Govindan, 2014). Let f(x, y) be a loss function 
depending upon the decision vector x and a random vector y 
with a probability density function p(y). The probability of f(x, 
y) not exceeding a threshold value η can be defined as: 
 

( ,  )
( ,  )  ( )

f x y
x p y dy

η
ψ η

≤
=   (7) 

 
Given a confidence level (0,  1),μ ∈ the VaR associated 

with the decision variable (x) can be expressed as: 
 

( ) min{ : ( ,  ) }VaR x R xμ η ψ η μ= ∈ ≥  (8) 
 

The corresponding CVaR is the conditional expectation of 
the loss of the portfolio (expected value) exceeding or equal to 

the VaR (Rockafellar and Uryasev, 2002):  
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( , ) ( )

( ) (1- ) ( ,  ) ( )
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CVaR x f x y p y dy
μ

μ μ
≥

=   (9) 

 
The CVaR is a coherent risk measure and takes into ac- 

count the extremely large losses that may occur. Then, Equa- 
tion (9) has the following equivalent form: 
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R
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∈
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where E(∙) denotes the expectation value with respect to p(y) 
and [ ] max{ ,  0}.t t+ = Assuming random vector y = {y1, y2, …, 
yK}, then ( ,  )F xμ η can be calculated approximately as follows: 
 

-1

1
( ,  ) (1- ) [ ( ,  ) - ]

K

k k
k

F x p f x yμ η η μ η +

=
= +   (11) 

 
where pk is the probability of scenario yk. Risk measures incor- 
porated in optimization problems can allow consideration of 
preferences on random outcomes. Thus, introducing the CVaR 
concept into model (6a ~ 6i), a non-deterministic integrated op- 
timization model with risk measure, which is capable of han- 
dling risk and uncertainty emerging from parameters variability, 
can be formulated as: 
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1 1

,  1,  2,  ,  
I J

tk it itk t
i j

v EP WS k Kη
= =

≥ ⋅ − =   (12i) 

 
0, , ;  1,  2, , itk tWS i t k K≥ ∀ =   (12j) 

 
0η ≥  (12k) 

 
where μ is a confidence level; λ is a goal programming weight, 
through changing λ value, decision makers can acquire the com- 
promise between the expected system benefit and the system 
failure risk; η is the system’s maximum loss under μ level; tkv is 
the positive auxiliary variable; -1

1
[ (1 -  ) ]

tK

tk tk
k

p vλ η μ
=

+  denotes the 
risk function of CVaR under μ level. The possibility distribu- 
tions of fuzzy parameters can be characterized as fuzzy sets. 
Solutions can be obtained by repeating the process via chang- 
ing α, λ and μ levels. Then, the final solutions for the objective-
function value and decision variables under a set of α, λ and μ 
levels can be obtained. Figure 1 provides an outline of the inte- 
grated model that incorporates non-deterministic optimization 
techniques (MSP, CCP and FP) and risk measure (CVaR) with- 
in a general framework. The detailed computational processes 
can be summarized as follows: 
 Step 1: Formulate a non-deterministic integrated optimi- 

zation model with risk measure [i.e., model (12a) ~ (12k)]. 
 Step 2: Discretize the range of membership grade [0, 1] 

into a finite number of α-cut levels (i.e., α1, α2, ..., αs). For 
each membership grade αj, find the corresponding intervals 
for fuzzy sets. 

 Step 3: According to Iskander (2005), transform stochas- 
tic-fuzzy constraint (i.e., Formula (12c)) to one determini- 
stic fuzzy equivalent (


,  ;  tkST RSC t kξ≤ ∀ = 1,  2, , tK , 

where 1ξ ϕ= −  ). Assume that fuzzy tolerance measure is 
presented as trapezoidal fuzzy numbers 1 2( , , , )ϕ ϕ ϕ ϕ ϕ= , 
then, 1 2( ,  ,  , )ξ ξ ξ ξ ξ= =

2 1(1 ,  1 ,  1 ,  1 ).ϕ ϕ ϕ ϕ− − − −  
 Step 4: Identify acceptable risk levels (i.e., μ and λ values). 
 Step 5: Under each μ and λ, take one end point from each 

of the intervals (under an α-cut level), there are 2m com- 
binations for m fuzzy sets. 

 Step 6: Solve 2m f sub-models, a set of objective-function 
values ( 1 2 2, , , mf f f ) can be obtained, and then identify 
the minimum and the maximum f . 

 Step 7: Repeat Step 6 at every α-cut level. 
 Step 8: Repeat the computational processes (Step 4 to Step 

7) at every λ and μ, and a set of values of f and CVaR can 
be obtained. 

 Step 9: Generate final solutions (e.g., optimal target, water 
shortage, and actual water allocation) and identify desired 
decision alternatives. 

3. Description of Case Study 

The developed approach is applied to a representative case 
of water resources management for the Heshui River Basin (at 
the upper reaches of the Ganjiang River, Jiangxi province), which 

is under growing pressure with population growth and econo- 
mic development increasing competition among multiple inte- 
resting users. The County of Yongxin had a total population of 
529,252 in 2019. The Heshui River is the center of this county. 
All large and small streams belong to the Heshui River system 
and most of the streams from the south or from the north flow 
into the Heshui River. The county utilizes the Heshui River to 
provide resources for its water supply, agricultural irrigation, 
fishery farming, industrial production, and navigation. In 2019, 
the county achieved a gross local product of 10.9 billion yuan, 
with an annual growth rate of 7.4%. Agriculture is traditionally 
the primary sector in the study area; rice, wheat, grain, rapeseeds 
and vegetables are the principal crops and main agricultural in- 
come sources. In 2019, the total output value of agriculture, 
forestry, livestock and fishery reached 3.2 billion yuan, with an 
annual growth rate of 3.3%. The county’s industry is mainly 
comprised of mining, manufacturing, construction, transporta- 
tion and other industries. Recently, many tourism sites and re- 
lics within the region have been attracting more and more tou- 
rists, leading to promoted transportation, food and service in- 
dustries. In 2019, the added value of its tertiary industry increas- 
ed by 8.3%, higher than those of other industries. Rapid econo- 
mic growth and fast urbanization process have exerted ever-
increasing pressure on the local water resource allocation, lead 
to obvious gap between water supply and water demand.  

 
Table 1. Net Benefit and Penalty 
 Period 1 Period 2 Period 3 
Net benefit when water demand is satisfied ($/m3): 
Municipal (1.42, 1.52, 1.65, 

1.80) 
(1.55, 1.68, 
1.75, 1.95) 

(1.68, 1.81, 
2.00, 2.17) 

Industry (1.07, 1.18, 1.31, 
1.43) 

(1.16, 1.27, 
1.35, 1.50) 

(1.28, 1.39, 
1.51, 1.65) 

Agriculture (0.54, 0.59, 0.66, 
0.72) 

(0.59, 0.65, 
0.71, 0.78) 

(0.65, 0.71, 
0.79, 0.87) 

Penalty when water is not delivered ($/m3): 
Municipal (2.54, 2.79, 3.03, 

3.37) 
(2.79, 3.07, 
3.31, 3.67) 

(3.04, 3.35, 
3.60, 4.00) 

Industry (1.92, 2.11, 2.31, 
2.54) 

(2.11, 2.32, 
2.50, 2.74) 

(2.30, 2.53, 
2.75, 3.01) 

Agriculture (0.95, 1.05,1.38, 
1.29) 

(1.04, 1.14, 
1.26, 1.41) 

(1.14, 1.25, 
1.37, 1.53) 

 
With water management issues becoming progressively 

more focused on sustainability, the impacts of system compo- 
nents on water supply and water demand have become even 
more pertinent. Table 1 presents the data of benefit and penalty, 
which are presented in terms of fuzzy sets with known trape- 
zoidal membership functions. They are mainly from govern- 
mental reports and public survey. The economic penalty is as- 
sociated with the acquisition of water from higher-priced alter- 
natives and/or the negative consequences generated from the 
curbing of regional development plans when the promised wa- 
ter is not delivered. Table 2 shows the available water from the 
river basin and the associated probabilities of occurrence in the 
planning periods. Shortages in water supply would occur if in- 
sufficient water is available, such that the regulated targets can- 
not be satisfied (i.e., shortage = regulated target – available water). 
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Figure 2. System benefits under 960 scenarios. 
 
 Table 2. Available Water (106 m3) and Related Probability 

 p 
value Available water 

Period 1 (t = 1) 
Low (L) 0.122 (322.3, 335.2, 345.6, 360.1) 
Low-medium (Lm) 0.283 (364.0, 378.6, 390.8, 407.0) 
Medium (M) 0.404 (443.1, 462.8, 480.9, 506.1) 
High (H) 0.191 (638.2, 663.7, 684.2, 712.7) 
Period 2 (t = 2) 
Low (L) 0.183 (336.9, 345.0, 354.6, 365.2) 
Medium (M) 0.585 (441.8, 462.1, 478.3, 501.2) 
High (H) 0.232 (641.7, 665.4, 688.3, 717.0) 
Period 3 (t = 3) 
Low (L) 0.155 (310.9, 323.7, 338.5, 352.6) 
Medium (M) 0.631 (417.7, 434.2, 452.8, 471.7) 
High (H) 0.214 (636.1, 658.4, 675.7, 702.8) 

4. Result and Discussion 

In this study, three α-cut levels (0, 0.5 and 1), four values 
for μ (from 0.6 to 0.99) and five values for λ (from 0.1 to 1) 
were investigated. For each α-cut level, sixteen conditions were 
examined based on different combinations of fuzzy intervals. 
Figure 2 presents the solutions for system benefit under 960 
scenarios. Results reveal that different combinative considera- 
tions on uncertain inputs lead to changed system benefits. Dif- 
ferent combinations of α, λ and μ levels would notably influence 
the optimal objective-function value. For example, when α = 0, 
μ = 0.6 and λ = 0.1, system benefit would reach its maximum 
value (fmax = $2135.3 × 106); when α = 0, μ = 0.99 and λ = 1, 
the minimum system benefit would be achieved (fmin = $1178.3 
× 106). If the concept of uncertainty degree (UD) is used for 
evaluating levels of uncertain parameters, we can define ( )UD f

max min max min( ) 100% ( ).f f f f= − × + Then, the UD of system ben- 
efit is 28.9%. Results can thus help decision makers acquire the 
compromise between system benefit and system-failure risk as 
well as generate a range of decision alternatives in response to 
uncertainty. 

 

 

 
 

Figure 3. Variation of system benefit with α level. 
 

Figures 3 to 5 show the variation of system benefit with α, 
μ and λ levels, respectively. In this study, each α-cut level de- 
notes a sub-set of elements that belong to a fuzzy set at least to 
a membership degree of α (also named degree of plausibility). 
The results indicate that α-cut level has significant effect on the 
objective-function value (i.e., the expected system benefit). When 
α = 0, the minimum and maximum system benefits would re- 
spectively be 1178.3 and 2135.3 million US$; they would form 
lower and upper bounds for system benefit (i.e., 0fα = = $[1178.3, 
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2135.3] × 106). When α = 1, the system benefit would be in the 
range of $[1407.6, 1877.8] × 106. Under a lower degree of plau- 
sibility (i.e., a lower α level), the interval is wider; conversely, 

a higher degree of plausibility would lead to a narrower intervall. 
When α = 0, the highest upper-bound system benefit may be 
achieved under advantageous conditions; however, the system   

 

  

  
Figure 4. Relationship between system benefit and μ level. 

 

  

  

 
Figure 5. Relationship between system benefit and λ level. 
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Figure 6. CVaR costs under 960 scenarios. 

 
may encounter the lowest lower-bound benefit under demand- 
ing conditions. When α = 1, the system would achieve the low- 
est upper-bound benefit under advantageous conditions; the 
highest lower-bound benefit would exist under demanding con-
ditions. Therefore, there is tradeoff between the water-alloca- 
tion benefit and the system-failure risk. More in-depth analysis 
of the projected applicable system conditions is needed to iden- 
tify the desired decision alternative. 

The results show that, as μ value rises, system benefit would 
slightly decrease (Figure 4). For instance, system benefits would 
be $[1305.4, 2135.3] × 106 (μ = 0.6) and $[1178.3, 2115.4] × 
106 (μ = 0.99). Besides, a higher λ value (corresponding to an 
increased risk-control level) could result in a lower system ben- 
efit (Figure 5). When λ value is changed from 0.1 to 1, system 
benefits would reduce from $[1401.4, 2135.3] × 106 to $[1178.4, 
2039.9] × 106. Generally, both higher μ and λ levels would lead 
to a reduced system benefit; nevertheless, a higher μ value (a 
higher confidence level) is associated with a lower system-
failure risk and a higher λ value (based on a risk-aversive atti- 
tude) corresponds to an increased risk-control level. Decision 
makers could assign different α, μ and λ values to adjust risk- 
control levels based on their preferences. Among the three fac-
tors (i.e., α, μ and λ), α level has the most observable effect on 
system benefit, implying that fuzzy information (e.g., benefit 
and cost data, stream flow, and storage capacity) would signifi- 
cantly impact the objective-function value and the associated 
decision alternative. Results can provide more useful informa- 
tion for decision makers regarding tradeoffs among system ben- 
efit, certainty and reliability. 

Figure 6 presents the solutions for CVaR cost under all sce- 
narios. Results show different combinations of α, μ and λ levels 
would influence the CVaR cost. When α = 0, μ = 0.6 and λ =0.1, 
the system would possess the lowest CVaR cost (i.e. CVaRmin 
= $10.1 × 106). When α = 0, μ = 0.99 and λ = 1, the highest 
CVaR cost would be obtained (CVaRmax = $245.1 × 106). The 
CVaR cost would range from $10.1 × 106 to 245.1× 106 and the 
matching UD is 92.1%. Figure 7 shows the variation of CVaR 
cost with α and μ levels. When μ = 0.6, CVaR costs would be 
$[10.1, 144.7] × 106 (α = 0) and [14.9, 120.2] × 106 (α = 1), in- 
dicating that the interval of CVaR cost becomes narrow with α 
level. Besides, results show that the CVaR cost would increase 

as μ value is raised. For example, when α = 0.5, the CVaR costs 
would be $[12.5, 135.8] × 106 (μ = 0.6) and [32.1, 215.4] × 106 
(μ = 0.99). Figure 8 provides the change of CVaR cost with λ 
level. For example, the CVaR cost would be $[10.1, 43.9] × 106 
when λ = 0.1; while the lower- and upper-bound CVaR costs 
would increase to $[78.7, 245.1] × 106 (under λ = 1). Generally, 
both higher μ and λ levels would lead to an increased CVaR 
cost but a lower system-failure risk. 

An optimized set of water-target values (i.e., the first-stage 
decision variables) could be identified under varying system 
conditions. This optimized set could help approach to the high- 
est possible system benefit under uncertainty. Figure 9 presents 
water-allocation targets under several typical scenarios, which 
correspond to minimum and maximum system benefits under 
α levels of 0, 0.5 and 1, respectively. Results indicate that α, μ 
and λ levels can affect the water-allocation target. The α level 
is associated with water availability and reservoir storage capa- 
city, which thus could directly lead to varied water-allocation 
targets (with the highest influence). For example, when α = 0, 
water-allocation targets for agriculture would range from 143.4 
× 106 m3 (μ = 0.99, λ = 1) to 158.6 × 106 m3 (μ = 0.6, λ = 0.1) 
in period 1; when α = 1, water-allocation target for agriculture 
would be a deterministic value in period 1 (i.e. 143.4 × 106 m3). 
The results point out that a lower α-cut level would result in a 
wider interval for water-allocation target. The total allocation 
targets for municipal, industry and agriculture would be [1266.4, 
1486.3] × 106 m3 (α = 0), [1273.5, 1452.8] × 106 m3 (α = 0.5), 
and [1292.6, 1435.7] × 106 m3 (α = 1). 

The optimized allocation target for agriculture would reach 
its minimum value under demanding conditions since this user 
is associated with the lowest benefit. Variation in the values of 
allocation targets reflects different policies for managing the 
water resources under uncertainty. If water allocation targets 
are regulated too low, the corresponding policy may result in 
less water shortage and thus lower penalty but, at the same time, 
more waste of resources would be generated when streamflow 
level is high. Conversely, if water-allocation targets are too high, 
a higher risk of penalty would be generated when the promised 
water cannot be satisfied under demanding conditions (e.g., 
when the water flow level is low). Therefore, different policies 
in regulating the water-allocation targets are associated with dif-  
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Figure 7. CVaR costs under different α and μ levels. 
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Figure 8. CVaR costs under different λ levels. 

 

 

 

 
 

Figure 9. Optimal targets under several typical scenarios. 

ferent benefits and penalties. 
Figure 10 shows the optimal amounts of water allocated (re- 

spectively corresponding to lower and upper system benefits) 
to municipal, industry and agriculture over the planning hori- 
zon under several typical scenarios. Symbols “LLL” and “HHH” 
denote low and high stream flows in all of the three periods, re- 
spectively. For example, when flow levels are all low in the 
three periods (i.e., LLL), the amount of water allocation corre- 
sponding to the minimum system benefit would be 977.4 × 106 
m3 (α = 0, μ = 0.99, λ = 1); the related water shortage would be 
in the range of 289.0 × 106 m3 and 508.9 × 106 m3. The amount 
of water allocation under the maximum system benefit would 
be 1085.2 × 106 m3 (α = 0, μ = 0.6, λ = 0.1) and the water short- 
age would be [181.2, 401.1] × 106 m3. Among all users, munici- 
pal is the largest water consumer, accounting from [44.0, 45.8]% 
of the total water allocation. Water allocation schemes would 
be different from each other as α, μ and λ levels are changed; 
this reveals that both uncertainties (randomness and fuzziness) 
and risk attitudes impact water allocation schemes. Among all 
users, the shortage for municipal is the lowest under all flow 
levels. The municipal use should be of the highest priority since 
it brings the highest benefit when its water demand is satisfied; 
meanwhile, it is subject to the highest penalty if the promised 
water is not delivered. Agriculture would encounter serious wa- 
ter shortage, particularly when streamflow levels are low over 
the planning horizon. When the targeted water cannot be sup-  
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Figure 10. Water allocation to each user under several typical scenarios. 
 
plied, the local farmers often obtain water through overexploi- 
ting groundwater; the largely uncontrolled groundwater use can 
produce far-reaching environmental and social problems (e.g., 
water table depletion, groundwater quality degradation, destruc- 
tion of associated water ecosystem, proliferation of free-riding 
behaviors). In future, restrictions for municipal water allocation 
may be introduced when streamflow is very low, which may be 
used to demonstrate the implied value of water by the losses 
that occur in the agricultural sector (the marginal value of crops 
foregone). 

Figure 11 compares water allocation patterns under differ- 
ent α-cut levels (corresponding to lower and upper system ben- 
efits). Under the worst-case scenario, when flow levels are all 
low over the planning horizon, the total of allocated water would 
be [977.4, 1085.2] × 106, [994.3, 1065.6] × 106 and [1011.2, 
1046.0] × 106 m3 under α levels of 0, 0.5 and 1; nevertheless, 
the total water demands range from 1266.4 × 106 m3 to 1515.2 
× 106 m3, indicating a severe shortage in water supply under 
each α-cut level. Although the probability of the worst-case 
scenario is low, the penalties due to the occurrence of such an 
extreme event are high. Therefore, an optimal policy that is for- 
mulated based on the analyses of not only the system benefits 
but also the related risks and the associated penalties would be 
acquired. 

5. Concluding Remarks 

In this study, a non-deterministic integrated optimization 
model with risk measure has been developed for planning wa- 
ter resources system under uncertainty. The developed model 
can tackle uncertainties presented as probability distributions, 
fuzzy sets, and their combinations. Risk-aversion measures are 
incorporated into the optimization framework to reflect the pre- 
ference of decision makers, such that the tradeoff between sys- 
tem benefit and extreme expected loss are investigated. Vertex 
analysis approach is proposed for solving the model, such that 
solutions under different α, μ and λ levels can be generated by 
solving a series of deterministic models.  

The conventional two-stage and multistage stochastic pro- 
gramming models consider the expectation as the preference 
criterion while comparing the random variables to find the best 
decisions, based on an assumption that decision makers are risk 
neutral. In comparison, the developed model is capable of han- 
dling probabilistic and possiblistic uncertainties which are of- 
ten related to resource availability as well as taking into the ac- 
count the average loss exceeding the value-at-risk. Results (from 
the integrated optimization model) can reflect the decision ma- 
kers’ attitudes towards risk aversion and generate all potential 
options for decision making in association with different  
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Figure 11. Water allocation patterns under several typical scenarios. 
 
system-reliability levels. 

The developed model has been applied to a case study of 
planning water resources management in the Heshui River Ba- 
sin. In the modeling formulation, penalties are exercised with 
recourse against any infeasibility, which permits analyzing pol- 
icies that are associated with different levels of economic con- 
sequences when the promised water-allocation targets are vio- 
lated. CVaR measure is used in the objective function for ad- 
dressing the expected loss under extreme conditions (i.e., risk 
aversion). A number of uncertainty and risk measures (i.e., α, 
μ and λ) are designed, such that 960 scenarios have been exam- 
ined. Results indicate that deficits would occur when the avail- 

able water amounts are less than the promised targets. The wa- 
ter-allocation schemes would be different from each other as α, 
μ and λ levels are changed; this reveals that random and fuzzy 
uncertainties as well as decision makers’ attitudes towards risk 
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higher μ and λ levels lead to a reduced system benefit and an 
increased CVaR cost, such that decision makers could assign 
different μ and λ values to adjust risk-control levels based on 
their preferences. However, the selection of a suitable alterna- 
tive among the obtained solutions under different α, μ and λ 
values is challenged. To make the final decision, not only the 
attitudes of decision makers toward risks, but also their abilities 
of comprehensive consideration and integrated assessment to 
different schemes have to be considered. 
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