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ABSTRACT. The human health risk (HHR) assessment to dense non-aqueous phase liquids (DNAPLs) exposure has become an impor- 

tant part of groundwater environment management. Usually, DNAPL transport models are applied to simulate the concentration distribu- 

tion of contaminant for HHR assessment. The present paper studied the influences of model uncertainties on the HHR assessment, and 

the metric of Incremental Lifetime Cancer Risk (ILCR) was used to quantify HHR. The impacts of permeability’s heterogeneity and the 

structure of DNAPL transport model (e.g., the constitutive model) on HHR assessment were evaluated based on a synthetical DNAPL 

transport model. The results demonstrate that, compared with the low heterogeneity, the high heterogeneity leads to lower average ILCR 

value at the control planes near the source zone, and higher average ILCR value at the control planes far away from the source zone. In 

addition, the HHR assessments would be inconsistent for the two constitutive models, i.e., Stone-Parker (S-P) and Corey-van Genuchten 

(C-v) models. Compared with the HHR assessment depending on C-v model, the mean of ILCR’s probability distribution produced by 

S-P model is larger at the control planes near the source zone, and smaller at the control planes far away from the source zone. Moreover, 

based on a sandbox experiment, the impact of parameter uncertainty of DNAPL transport model on HHR assessment was evaluated by 

Markov chain Monte Carlo (MCMC) simulation. The results show that it is infeasible and risky to assess HHR by the specific parameters 

of contaminant transport model and ignoring parameter uncertainty. The HHR assessment by incorporating Bayesian uncertainty analysis 

could provide more flexible information. In addition, the sparse grid (SG) surrogate is an effective way to reduce computation burden 

caused by the larger number of model executions in the MCMC based HHR assessment. 
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1. Introduction 

The contamination of groundwater has become a thorny 

environmental issue threating the ecological system and human 

health (Aghapour et al., 2018). Dense non-aqueous phase liquids 

(DNAPLs) are common groundwater contaminants released from 

the wastewater of electronic and chemical factories, e.g., tetra-

chloroethene (PCE) (Mccarty et al., 2007; Lin et al., 2018), 

which cannot dissolve in water with a density exceeding 1 g/cm3 

(Adamson et al., 2003). Due to the complex physical and chem- 

ical properties, the removal or remediation of DNAPLs con- 

tamination could be difficult and costly (Sabatini et al., 2000). 

In order to evaluate the potential impact of DNAPLs on human 

life and provide decisive information for treating contaminated 

sites, the human health risk assessment to DNAPLs exposure 

has become a necessary part of groundwater environment man- 

agement (Christ et al., 2005; Henri et al., 2016). 

Human health risk (HHR) assessment refers to the process 

of evaluating the probability of adverse health effects on hu- 

mans prone to exposed to contaminated environmental media 

at present or in the future (EPA, 1989; EPA, 2009). Currently, 
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a commonly used assessment model to quantify HHR is the risk 

assessment guidance for superfund (RAGS) (EPA, 1989; EPA, 

2009). RAGS consists of four parts: hazard identification, dose- 

response, exposure assessment, and risk characterization (EPA, 

1989). In addition, the estimation of exposure assessment is the 

key step of RAGS. Generally, the result of exposure assessment 

is described by the average daily dose (ADD) of exposure (EPA, 

1989). ADD is influenced by both hydro-geological factors (e.g., 

contaminant concentration) and behavioral and physiological 

factors (e.g., exposure duration (ED), exposure frequency (EF)). 

Recently, some researches have conducted HHR assess- 

ment by detecting contaminant’ concentration in groundwater 

samples from field site. For example, Mishra et al. (2017) ap- 

plied inductively coupled plasma (ICP) spectrometry to detect 

contaminants in groundwater samples and evaluate the HHR 

exposed to various heavy metal contaminants. Fallahzadeh et al. 

(2018) used inverse distance weighting (IDW) method to identify 

the spatial and temporal distribution of fluoride contaminant con- 

centrations in Iran and assess HHR for people ranging from 3 

to 72 years old. However, it is difficult to obtain contaminant’s 

distribution in groundwater accurately through limited samples. 

In particular, the distribution of contaminant in groundwater is 

dynamically changing in time and space. 

In recent decades, the numerical/analytical models have 

been widely used to describe the migration process of contam- 

inant in groundwater when estimating contaminant’s concen- 
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tration for HHR assessment (Maxwell et al., 1999; Barros and 

Rubin, 2008; Siirila and Maxwell, 2012a; Zarlenga et al., 2016). 

Kumar et al. (2013) established a simple flow and transport mo- 

del to simulate the residual concentration of pesticide lindane, 

and the simulated concentration distribution is treated as the in- 

put of HHR assessment. However, groundwater is an open and 

dynamic system, and the transport of contaminants in ground- 

water is influenced by many factors, e.g., flow rate, aquifer’s 

properties, adsorption, biodegradation. 

Modeling uncertainty has been well recognized in ground- 

water/hydrology community, the outputs of groundwater mod- 

el could be unreliable due to biased model parameters and mod- 

el structure. Especially, simulating DNAPLs transport in ground- 

water is even tougher because DNAPLs could accumulate and 

form a pool when they are hindered by an aquitard or a lense with 

low permeability (Emanuel and Sapsford, 2016). Moreover, the 

DNAPL pools would become the new sources of the con- 

taminant, which makes the simulation of DNAPL transport more 

complicated (Kueper and Mason, 1996). Due to the driving of 

these uncertainty factors, the contaminant distributions produc- 

ed from groundwater model are inevitably eroded with uncer- 

tainties. Based on probability statistics theory, the contami- 

nant’s concentration can be described in terms of probability 

density function by taking into account all uncertainty sources 

(Zeng et al., 2015; Ju et al., 2018). 

The heterogeneity of porous media, dispersion, biodegra- 

dation and reaction of the contaminants in transport process have 

been considered as important uncertain sources in HHR assess- 

ment (Siirila and Maxwell, 2012b; Barros and Fiori, 2014). 

Maxwell et al. (1998) assessed the HHR of a drinking water 

source exposed to PCE by considering both behavioral factors 

and aquifer parameters uncertainties. They investigated the in- 

fluence of heterogeneity degree on HHR. Henri et al. (2015, 

2016) discussed the influence of different forms of DNAPL, 

different injection modes and the degradation of chemical mix- 

tures on HHR assessment. They verified the impact of the un- 

certainty of permeability filed on HHR assessment but did not 

focus on uncertainty quantification. Moreover, Stewart and Hur- 

sthouse (2018) demonstrated that the uncertainties in each step 

of the assessment framework should be fully considered. Now- 

adays, various methods have been applied to deal with the un- 

certainty in HHR assessment, such as fuzzy mathematics (Chen 

et al., 2017; Dutta, 2017), regression analysis (Mondal et al., 

2008), and Markov chain Monte Carlo (MCMC) simulation 

(Lester et al., 2007; Bernillon and Bois, 2000). Currently, MCMC 

is mainly applied for quantifying the uncertainty related to toxi- 

city properties in HHR assessment, but seldom employed for 

treating the uncertainty derived from contaminant transport 

model. Nevertheless, MCMC has been widely used for the un- 

certainty quantification of water resources and environment 

models by integrating the powerful and efficient sampling al- 

gorithms (Zhang et al., 2018). This study evaluated the uncer- 

tainty of contaminant transport model by incorporating MCMC 

simulation into HHR assessment. 

The permeability of pours media has great impact on 

groundwater flow field and DNAPL transport (Zheng et al., 

2015). DNAPLs would accumulate above the low permeability 

porous media as pools and transport preferentially through the 

high permeability areas (Yang et al., 2018). Thus, the media’s 

permeability could contribute important uncertainty to HHR 

assessment when using DNAPL transport model to generate 

contaminant’s distribution. In order to reduce the uncertainty 

of transport model, Fernàndez-Garcia et al. (2012) identified 5 

model parameters and used one realization of the stochastic 

permeability field to conduct the risk assessment. However, the 

heterogeneity of permeability field cannot be represented ap- 

propriately by using one realization. Based on a sandbox DNAPL 

transport experiment, we evaluated the uncertainty of media’s 

permeability to HHR assessment through MCMC simulation, 

and this is the first focus of this study. In addition, to overcome 

the heavy computation burden caused by the large number of 

executions of DNAPL transport model in Bayesian uncertainty 

analysis, the sparse grid technique was implemented to build 

surrogate for that DNAPL transport model. 

Nowadays many researchers have recognized that model 

structure can be the important uncertainty source in ground- 

water/surface water modeling (Refsgaard et al., 2006; Gupta et 

al., 2012). Due to the lack of the understanding of site condi- 

tions and misleading simplification of complex processes, mod- 

el structure uncertainty is inevitable in DNAPL transport mod- 

eling (Thomsen et al., 2016). As a result, the simulated contam- 

inant’s concentration distribution could be unreliable because 

of model structure uncertainty. Koch and Nowak (2015) point- 

ed out that the model structure uncertainty could be partly re- 

duced by setting proper pore-scale, because it can characterize 

the entire soil and aquifer structure reasonably. However, this 

is infeasible for large scale groundwater contaminant transport 

models, e.g., field scale or basin scale. The DNAPL transport 

in groundwater system can be regarded as a multiphase flow 

problem, which involves the aqueous phase and DNAPL phase. 

Generally, the constitutive models are used to describe the im- 

portant properties (e.g., capillary pressures and relative perme- 

ability) of the fluids in porous media. In order to evaluate the 

impact of model structure uncertainty on HHR assessment, two 

DNAPL transport constitutive models are used to assess HHR 

respectively based on a synthetical DNAPL transport model, 

and this is the second focus of this study. 

The innovation of this study is that we evaluated the un- 

certainties of several important factors (e.g., permeability het- 

erogeneity, constitutive model structure) on DNAPL transport 

modeling and HHR assessment through Bayesian uncertainty 

analysis. This paper is organized as follows: the HHR assess- 

ment model, DNAPL transport model and MCMC simulation 

are briefly introduced in Section 2. The implementation details 

of DNAPL transport models to a synthetical case and a sandbox 

experiment are described in Section 3. The application of meth- 

odologies is described in Section 4. The results and discussions 

on the influence of model parameter and structure uncertainties 

on HHR assessment are presented in Section 5. Finally, the sum- 

mary and discussions of our study are drawn in Section 6. 

2. Methodology 

2.1. Human Health Risk (HHR) Model 

In this study, the HHR assessment is based on RAGS (EPA, 
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1989), and a commonly used metric - Incremental Lifetime Can- 

cer Risk (ILCR) is used to quantify HHR. Typically, the accept- 

able risk value of ILCR ranges between 1 × 10-4 and 1 × 10-6. 

For ease of illustration, we set the acceptable risk value to 1 × 

10-6, which means that related prevention measures should be 

taken when ILCR exceeds 1 × 10-6. ILCR represents the increas- 

ed probability that one person will have cancer during the life- 

time because of the exposure to potential chemical carcinogens 

(Ogbeide et al., 2016). In this study, we focused on the threats 

arising from the exposure to a typical DNAPL contaminant te- 

trachloroethylene (PCE). 

ILCR is an integrated metric over time. It can be formally 

written as (Henri et al., 2016): 

 
 

1 exp
ADD CPF

ILCR
 

   (1) 

 

where ILCR is the human health risk, CPF is the metabolized 

cancer potency factor [kg d/mg], ADD is the average daily dose 

of the exposure via direct ingestion of PCE [mg/(kg d)], given 

by EPA (2009): 

 

IR ED EF
ADD C

BW AT

 



 (2) 

 

where IR is the ingestion rate of water per day [L/d], BW is the 

common body weight [kg], ED is the exposure duration [y], EF 

is the daily exposure frequency [d/y], AT is the expected life-

time [d], C is the average concentration of PEC during the 

exposure duration. There are various exposure pathways in re- 

ality, such as ingestion of contaminated water, inhalation from 

polluted air, exposure to contaminant in the skin, and so on. 

The focus of this work is the transport of DNAPLs from the 

source zone to the environmental sensitive locations. In order 

to simplify the issue, only the exposure pathway of ingestion of 

contaminated water is taken into account. The average concen- 

tration <C> in Equation (2) is mathematically expressed by 

Maxwell and Kastenberg (1999): 

 

 max /
t ED

t

C c t ED
 

  
 
  (3) 

 

where c(t) is the flux-averaged concentration. 

 

2.2. DNAPL Transport Model 

The processes of groundwater flow and DNAPL transport 

were simulated numerically in this study. DNAPL is a quasi- 

immiscible fluid and the DNAPL transport is considered as a 

multiphase flow problem. The movement of each phase (e.g., 

aqueous phase, DNAPL phase) in multiphase flow can be de- 

scribed by pressure and gravity in a heterogeneous form of 

Darcy's law (Falta et al., 1995; Pruess et al., 1999). The balance 

equation for component κ (κ = w-water, a-air, n-DNAPL) over 

three phases β (β = g-gas, w-aqueous, n-DNAPL) is written as 

(Falta et al., 1995): 

   
n n

r

n

V

kd
S X dV k p

dt

 
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
  




 
    

  
   g  

n

n n

V

d q dV  n  (4) 

 

where t is time [s], φ is the porosity, Sβ is the saturation (pore 

volume fraction) occupied by phase β, ρβ is the β phase density 

[kg/m3], Xβ
κ is the mass fraction of component κ in phase β, Vn 

is arbitrary flow region, Γn is surface area [m2], k is the absolute 

permeability [m2], krβ is the relative permeability of phase β 

[m2], μβ is the β phase dynamic viscosity [cP], Pβ is the fluid 

pressure in phase β [Pa], g is the gravitational acceleration vec- 

tor [m/s2], n is the inward unit normal vector, and qκ is the rate 

of heat generation per unit volume. In the Equation (4), the pres- 

sure Pβ and saturation Sβ are defined by capillary pressure func- 

tion and relative permeability function respectively, and both 

of them are called constitutive models (Croise et al., 1995). 

For multiphase flow simulations, the capillary pressures 

and relative permeability are important factors that determine 

the migration and distribution of fluids in a soil-groundwater 

system (Mathew et al., 2005). In this study, in order to evalu- 

ate the impact of constitutive model on the DNAPL transport 

model based HHR assessment, the Stone model (Stone, 1970) 

and Corey model (Brooks and Corey, 1964) were used to de- 

fine relative permeability function respectively. The Parker mod- 

el (Parker and Lenhard, 1987) and van Genuchten model (van 

Genuchten, 1980) were used to define capillary pressure func- 

tions respectively. 

Stone model is a common three phase relative permeabil- 

ity function written as (Stone, 1970): 

 

( ) / (1 )
n
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1w g nS S S    (8) 

 

where Sβr is the residual saturation occupied by phase β and n 

is fitting parameter.  

Corey model is a traditional relative permeability function 

as follows (Brooks and Corey, 1964): 

 
4

*rlk S  (9) 
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Parker model is a frequently-used three phase capillary 

function given by (Parker and Lenhard, 1987):  
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1
1m

n
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where Swe is the effective saturation occupied by phase water, 

Sle is the effective saturation occupied by phase liquid, Sm is the 

residual saturation occupied by phase liquid, Pcgn is gas-DNAPL 

capillary pressure [Pa], Pcgw is gas-water capillary pressure [Pa], 

αgn is the reciprocal of gas-DNAPL intake pressure, αnw is the 

reciprocal of DNAPL-water intake pressure, and m is fitting pa- 

rameter. 

Van Genuchten model is one of the foundational capillary 

and saturation relationships models written as (van Genuchten, 

1980): 

 

 1

m
n

S P
le c




 

  
 

 (17) 

 

where α is fitting parameter, β is a scaling factor, and Pc is cap- 

illary pressure [Pa]. 

The numerical simulator, T2VOC, was applied in this study 

to simulate DNAPL transport based on the Equations (4) ~ (17). 

T2VOC uses the integral finite-difference method for spatial dis-

cretization and it has been used for many multiphase contam-

ination transport issues (Mccarty and Falta, 1997; Zheng et al., 

2015). More details about T2VOC can be found in Falta et al. 

(1995). 

 

2.3. Markov Chain Monte Carlo Theorem 

Considering a nonlinear model (e.g., DNAPL transport 

model) M = f(θ), the observation data D is defined as: 

 

( )f D    (18) 

 

where θ [θ1, θ2…, θd] represents model parameters, and ε re- 

presents residual error derived from measurement error, biased 

model parameters and model structures. The posterior distribu- 

tion p(θ|D, M) of parameters can be estimated through Bayes’ 

theorem: 
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where p(θ|M) is the prior distribution of parameters θ, p(D|θ, 

M) is the joint likelihood function of parameters θ and obser- 

vation data D, which is also denoted as L(θ|D, M), p(D|M) is 

the marginal likelihood of model M, which is a multidimension-

al integral of joint likelihood in the prior distribution space. In 

practice, the prior distribution p(θ|M) is user-specified accord-

ing to experts’ experience and pilot experiments, and the joint 

likelihood p(D|θ, M) can be expressed as: 

 

(θ | D, )L M  

 
   1

1/2/2

1 1
exp D C D

22 C

T

n


 
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 
f f  (20) 

 

where C represents residuals’ covariance matrix, and n is the 

number of observations. 

It is difficult to obtain the analytical expression of poste- 

rior distribution p(θ|D, M) because of the complexity of likeli- 

hood function p(D|θ, M). However, Markov chain Monte Carlo 

(MCMC) method is capable of generating samples from the pos- 

terior distribution by constructing Markov chains that satisfy 

 

 
 

Figure 1. Planform of the DNAPL transport in the synthetical case (the cross section is located at z = 10 m). 
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ergodicity and reversibility. Then the obtained samples are used 

to construct p(θ|D, M) by statistical analysis. Differential evo- 

lution adaptive Metropolis (DREAMzs) (Vrugt and Ter Braak, 

2011; Laloy and Vrugt, 2012) is an effective and robust MCMC 

sampling algorithm, which integrates differential evolution, sam- 

pling randomized subspace sampling, and snooker update tech- 

niques, etc. In addition, DREAMzs is designed to solve high-

dimensional and multimodal problems, e.g., the likelyhood func- 

tion of DNAPL transport model. In this study, the saturation of 

DNAPL is used as observed data D.  

3. Descriptions to DNAPL Transport Cases 

3.1. Synthetical DNAPL Transport Case 

A synthetical DANPL transport case was considered by 

assuming a three-dimensional confined aquifer contaminated 

by tetrachloroethylene (PCE) that the density is 1620 kg/m3 and 

the viscosity is 0.88 cp. The domain was a cuboid with length 

LX = 800 m, width LY = 20 m, and thickness LZ = 20 m. Figure 

1 showed the planform of the DNAPL transport in the synthet-

ical case. This aquifer had a constant flow boundary condition 

with inflow at the sites of x = 0 m, and outflow at x = 800 m, 

and the flowrate was set to 4000 m3/d. In addition, the other 

boundaries were all defined as no-flow conditions. 

The release of PCE source into this aquifer had stopped 

prior to the HHR assessment, and 45 kg of PCE remained in 

the groundwater at the start time of PCE transport model. Thus, 

this synthetical case focused on the HHR assessment to the 

transport of remained PCE contamination. In this study, the en-

vironmental sensitive locations are represented by control planes 

x along the longitudinal direction. In the x direction, 40 equally 

spaced control planes were placed in the model domain to de-

tect the concentration of PCE contamination. We calculate ILCR 

at different distances from the contaminant source area along 

the water flow direction. 

In this synthetical case study, the aquifer’s permeability 

was assumed as unknown when building DNAPL transport 

model to simulate contaminant’s concentration distribution. A 

stochastic framework was applied to describe the heterogene- 

ity of this aquifer, and the permeability-filed (k) was consid- 

ered as a random space function. The detailed description to the 

structure of k field was given in Section 4.1. 

 

3.2. Sandbox Experiment Case 

As shown by Figure 2, a two-dimensional sandbox exper- 

iment was conducted to simulate the transport of PCE in het- 

erogeneous porous media (Wu et al., 2017). The sandbox was 

built with length LX = 0.6 m, width LY = 0.45 m, and thickness 

LZ = 0.016 m. The left side of the sandbox was an inflow 

boundary condition with a constant flowrate of 7.2×10-3 m3/d, 

which was controlled by a peristaltic pump. In addition, five rect- 

angular lenses with low permeability were placed in the sand-

box to simulate the impact of heterogeneity on the transport of PCE. 

In this sandbox experiment, the injection point of PCE 

located at x = 0.3 m, y = 0.4 m, and z = 0.008 m. The PCE 

saturations in the sandbox were monitored by light transmis- 

sion method (LTM) (Wu et al., 2018). Moreover, prior to the 

HHR assessment to PCE transport, the contamination source 

had stopped leaking into the groundwater system. Thus, this case 

study focused on the remained contamination in the aquifer. 

Figure 3 shows the PCE saturation distribution in the sandbox 

at the start time of HHR assessment. 

 

 
 

Figure 2. Schematic diagram of the two-dimensional PCE 

sandbox experiment. 

 

 
 

Figure 3. The saturation distribution of PCE at the start time 

of HHR assessment. 

4. Application of Methodology 

In the case study of a synthetical DNAPL transport mod- 

el, the impact of aquifer’s heterogeneity and model structure 

uncertainty (e.g., the constitutive model) on HHR assessment 

was evaluated. In the case study of a DNAPL transport sand- 

box experiment, the impact of parameter uncertainty (e.g., the 

permeability parameters) on HHR assessment was evaluated. 

Moreover, the sparse grid surrogate technique was used to over- 

come the heavy computation burden of HHR assessment when 

using MCMC to calibrate parameter uncertainty. 

 

4.1. Assessing HHR for the Synthetical DNAPL Transport 

Model 

According to the synthetical case described in Section 3.1, 

the numerical simulation of PCE migration was performed us- 

ing T2VOC (Falta et al., 1995). The whole aquifer was discre- 

tized into 40 cells in x direction, 5 cells in y direction and 5 cells 

in z direction. The porosity of the aquifer was set to 0.28, and 
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the Stone-Parker constitutive model is used. Due to the unknown 

permeability of the aquifer, the log-permeability (lnk) field was 

assumed as a random space function following multi-Gaussian 

distribution (Gelhar, 1993; Marsily et al., 2005), which was de- 

scribed by an isotropic exponential covariance model. 

Two heterogeneity scenarios were considered in this syn- 

thetical case study, and the variance of log-permeability (σ2) was 

used to represent the degree of heterogeneity. The low hetero- 

geneity scenario was presented by setting σ2 to 0.25, and the 

high heterogeneity scenario was presented by setting σ2 to 2.25. 

For the two scenarios, the means of log-permeability (lnk) field 

were both defined as -18.4 and the integral scales ratios were 

both 0.15. The random permeability fields were generated us-

ing sequential Gaussian simulation in GSLIB program (Deuts- 

ch and Journel, 1995). Moreover, for each heterogeneity scenar- 

io, 250 random permeability field realizations were generated 

and then to build DNAPL transport model, respectively. 

 

Table 1. Parameter Setting for Constitutive Models 

Parameter Value 

Stone model 
 

Water residual saturation, Swr 0.1 

DNAPL residual saturation, Snr 0.15 

Gas residual saturation, Sgr 0 

Stone model fitted parameter, n 3 

Parker model 
 

Liquid phase residual saturation, Sm 0 

Parker model fitted parameter, n 1.84 

Reciprocal of gas-DNAPL intake pressure, αgn 10 

Reciprocal of DNAPL-water intake pressure, αnw 11 

Corey model 
 

Liquid phase residual saturation, Slr 0.25 

Gas residual saturation, Sgr 0 

van Genuchten 
 

van Genuchten fitted parameter, λ 0.457 

Liquid phase residual saturation, Slr 0 

Reciprocal of intake pressure, 1/P0 1.76E-03 

Max capillary pressure, Pmax 50000 

Liquid phase saturation, Sls 1 

 

Along the x direction of study area (Figure 1), 40 equally 

spaced control planes were set in the model domain to detect 

contamination’s distribution in the aquifer, which was perform- 

ed by using T2VOC. ILCR are calculated at these control planes. 

For each heterogeneity scenario, 250 contaminant’s concentra- 

tion distributions at each control plane are generated based on 

corresponding permeability field realizations. For each concen- 

tration distribution at one control plane, the HHR was quanti- 

fied by computing the ILCR through Equation (1) and Equation 

(2). Thus, a total of 250 ILCR values were obtained for each con- 

trol plane. In addition, the parameters of RAGS model (e.g., 

Equation (1) and Equation (2)) were defined by referring to 

Henri et al. (2016), e.g., the CPF was set to 0.002 kg•day/mg, 

IR was 1.5 L/d, BW was 70 kg, ED was 1 year, EF was 30 day 

/year, and AT was 365 day. 

In order to consider the impact of constitutive model struc- 

ture on HHR assessment, two model structures, the StonePar- 

ker (S-P) and Corey-van Genuchten (C-v) models were used as 

the constitutive models, respectively, and the HHR assessments 

based on corresponding DNAPL transport model were evalu- 

ated and compared. According to the researches of Shi et al. 

(2011) and Zheng et al. (2015), the parameters and their values 

used in the constitutive models are listed in Table 1. The vari- 

ance of lnk field was defined as 0.25 (σ2 = 0.25), and 250 ran- 

dom realizations of permeability fields were generated and used 

for the two constitutive models based HHR assessments, re- 

spectively. The process of HHR assessment for different con- 

stitutive models is similar to that for different permeability he- 

terogeneities. 

 

4.2. Assessing HHR for the Sandbox Experiment 

As shown by Figure 3, the transport of DNAPL is domi- 

nated by the characteristics of the background medium and low 

permeability lenses. We chose the permeability of these two 

zones (the background media and the lenses with low perme- 

ability), as unknown variables (k1, k2) when building numer- 

ical model for this DNAPL transport sandbox experiment. 

The sandbox experimental was considered as a two-

dimensional DNAPL transport problem, and the numerical sim- 

ulation was conducted by T2VOC (Falta et al., 1995). The sand- 

box domain was discretized into 35 cells in x direction, 38 cells 

in y direction, and 1 cell in z direction. In this sandbox experi- 

ment case study, the Stone-Parker constitutive model was used 

for the PCE transport simulation, and the related parameters 

were defined at Table 1. In addition, for the MCMC based un- 

certainty analysis (see section 2.3), the parameters (θ) k1 and 

k2 would be identified. The prior distributions of k1 and k2 were 

both assumed as uniform, and k1 was defined at [1.0 × 10-10, 

20.0 × 10-10], and k2 was defined at [1.0 × 10-11, 10.0 × 10-11]. 

The saturations of PCE during the injection period in the sand-

box were used as observations in this Bayesian analysis, and 

we chose the saturations at 50th minute in the injection period 

as validation. 

The once execution of this DNAPL transport model by 

T2VOC takes about 75 seconds in a personal computer with 

eight-core i7-6700 3.40 GHz processors. The MCMC based 

Bayesian uncertainty analysis requires 90,000 times model ex- 

ecutions in this case study. In order to overcome the heavy com- 

putation burden caused by the large number of executions of 

DNAPL transport model, the sparse grid stochastic collection 

technique (Zeng et al., 2018) was used to build surrogates when 

assessing HHR. In this case study, two surrogates were built 

for HHR assessment, the first was the response relationship be- 

tween model parameters (e.g., k1, k2) and log-likelihood func- 

tion (L(θ|D, M) in Equation (20)), which was denoted as likeli- 

hood surrogate. The second was the response relationship be- 

tween model parameters (e.g., k1, k2) and ILCR value, which 

was denoted as ILCR surrogate. As a result, the likelihood sur- 

rogate was used for MCMC simulation when inferring model 

parameters’ posterior distributions, that is to say the likelihood 

function L(θ|D, M) was calculated by using likelihood surro- 

gate instead of using original DNAPL transport model (i.e., 
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T2VOC). Correspondingly, based on the inferred parameters’ 

posterior distributions, the ILCR surrogate was used to produce 

ILCR’s probability distribution when assessing HHR. 

When building surrogates with spare grid (SG) technique, 

the maximum SG levels were set to 8 for both two surrogates, 

and the adaptive SG refinement levels were set to 5. The adap- 

tive error tolerances of the likelihood and ILCR surrogates were 

defined as 1 × 10-3 and 1 × 10-9, respectively, because the log-

likelihood value always varied from -1500 to -3500, and the 

ILCR value always varied from 1.0 × 10-5 to 1.4 × 10-5 in this 

case study. Figure 4 exhibits the complex response surfaces of 

the likelihood surrogate (plot a) and ILCR surrogate (plot b), 

respectively. 

Building the likelihood surrogate costs a total of 1,427 

model executions, which means 1,427 original DNAPL trans- 

port model executions were required to build the SG surrogate. 

Similarly, the construction of the ILCR surrogate model needs 

a total of 1,537 model executions. However, compared to the 

number of model executions required by the MCMC based Bay- 

esian uncertainty analysis (e.g., 90,000 model executions in 

this case study), this cost is acceptable. Figure 5 shows the ac- 

curacy of the two surrogates by comparing the results of sur- 

rogate and original model, and the model parameters were ran- 

domly sampled pled from corresponding prior distributions. 

Two metrics were used to quantify the performance of SG sur- 

rogates, which included root-mean-square error (RMSE) and 

coefficient of determination (R2). For the likelihood surrogate, 

the RMSE is 5.819, and the R2 between the results of surrogate 

and original model is larger than 0.999. For the ILCR surrogate, 

the RMSE is smaller than 0.005, and the R2 between the results 

of surrogate and original model is 0.998. Consequently, the two 

surrogates are deemed to be accurate adequately when they are 

used to replace the original DNAPL transport model in the Bay- 

esian uncertainty analysis based HHR assessment. 

The differential evolution adaptive Metropolis (DREAMzs) 

algorithm based MCMC simulation was used to estimate the 

posterior distributions of two model parameters (k1 and k2). 

Three parallel Markov chains were used when implementing 

DREAMzs to search the model parameters' probability space. 

The length of each chain was set to 30,000, based on Gelman- 

Rubin statistics (Gelman and Rubin, 1992), the length of burn-in 

period was set to 10,000, and the rest of 20,000 samples in each 

chain were used to produce model parameters’ posterior distri- 

butions. In addition, the likelihood surrogate was used to cal- 

culate likelihood values in this MCMC simulation. As a result, 

60,000 posterior parameter samples were obtained through this 

Bayesian uncertainty analysis, and then the HHR assessment is 

conducted by using ILCR surrogate. 

 

 
 

Figure 4. (a) The response surfaces of likelihood surrogate (likelihood function ~ model parameters), (b) The response surfaces of 

ILCR surrogate (ILCR ~ model parameters). 

 

 
 

Figure 5. (a) The accuracy performances of likelihood surrogate, (b) The accuracy performances of ILCR surrogate. 
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5. Results and Discussion  

5.1. HHR Assessments of the Synthetical Model 

5.1.1. Impact of Aquifer’s Heterogeneity on HHR Assessment 

ILCR is an integrated metric over time that only relies on 

position x. Therefore, it could be considered as a temporally 

integrative risk metric. Figure 6 displays the variation trends of 

the average ILCRs over 250 k field realizations along the 

groundwater flow direction profile for σ2
 = 0.25 and 2.25, re- 

spectively. Obviously, the average ILCRs decreases along the 

flow direction for both two degrees of heterogeneity. In addi- 

tion, the average ILCRs shows the slight difference for the two 

heterogeneity scenarios. Along the x direction, compared with 

the low heterogeneity scenario, the high heterogeneity leads to 

the lower average ILCR value before the 27th control plane (ζ 

< 27), and the higher average ILCR after the 27th control plane. 

Based on the 250 ILCR samples of each control plane, the 

ILCR’s probability density function (PDF) is produced through 

frequency analysis for both two heterogeneity scenarios. Fig- 

ure 7 exhibits the PDF of ILCR at different control planes for 

σ2 = 0.25. Clearly, the mean of ILCR’s probability distribution 

decreases as the control planes being far away from the con- 

taminant source zone, and the maximum mean value of ILCR 

occurs at the first control plane. Moreover, the mean of ILCR 

exceeds the acceptable risk value (1 × 10-6) in front of the 31st 

(ξ = 31) control plane, and necessary contamination treatment 

measures should be activated. In addition, the probability dis-

tribution of ILCR for σ2 = 2.25 presents the similar characteris-

tics with that for σ2 = 0.25, and so it is not shown in this study. 

 

 
 

Figure 6. The average ILCR at different control planes (ξ) for 

σ2 = 0.25 and 2.25, respectively. 

 

Figure 8 shows the PDFs of ILCR for two heterogeneity 

scenarios (σ2 = 0.25 and 2.25). The ILCR’s probability distri- 

bution of high heterogeneity (σ2 = 2.25) trends to have a larg- 

er variance than that of low heterogeneity (σ2 = 0.25). This is 

because the higher heterogeneity in k field could lead to a high- 

er variability of contaminant’s concentration distribution used 

for HHR assessment. Similar to Figure 6, the mean of ILCR’s 

probability distribution decreases with the distance between 

control plane and left side (x = 0) for both two heterogene-

ity scenarios. Moreover, the mean of ILCR in the case of high 

heterogeneity is lower than that of low heterogeneity for the 

control planes ζ < 27, and then the order of two ILCR’s means 

changes for the control planes ζ ≥ 27, which is consistent with 

the result of Figure 6. 

The difference in HHR assessments between the two het- 

erogeneous scenarios could be explained by the principle of 

preferential flow. The increase of permeability heterogeneity 

leads to more dominant channels in the aquifer. Contaminant 

will preferentially pass through these dominant channels for 

their relatively high permeability. As a result, contaminant can 

transport further in the aquifer with higher heterogeneity (Zheng 

et al., 2015). As shown in Figure 9, the two plots (a and b) of 

first row represent the two realizations of k field with σ2
 = 0.25, 

and the second row (c and d) shows the two realizations of k 

field with σ2
 = 2.25. It is obviously to find that the porous media 

with higher heterogeneity (e.g., the plots of c and d) would re- 

sult in a more complex structure and more dominant channels. 

Therefore, the higher heterogeneity in aquifer could lead to the 

higher contaminant concentration, as well as the higher HHR. 

Moreover, based on the mass balance, the higher concentration 

in further area means the lower concentration in nearby area. 

This is the reason for that the high heterogeneity leads to the 

lower mean of ILCR than low heterogeneity at the position near 

the source zone (ζ < 27), and the higher mean of ILCR at the 

position far away from the source zone (ζ ≥ 27). 

 

5.1.2. Impact of Constitutive Model on HHR Assessment 

Figure 10 shows the PDFs of ILCR calculated by using S-

P model and C-v model respectively at different control planes 

(the σ2 of k field is 0.25). The two PDFs produced by using 

different constitutive models have similar shapes. Moreover, in 

front of the 28th control plane (e.g., ζ ≤ 28), the mean of ILCR’s 

PDF produced by using S-P model is larger than that by using 

C-v model. Correspondingly, after the 28th control plane (e.g., 

ζ > 28), the probability distribution of ILCR calculated by using 

S-P model has the smaller mean than that by using C-v model. 

The differences between the two constitutive models based 

HHR assessments are caused by the two reasons that (1) The 

hysteresis is not considered by C-v model, which is described 

by S-P model; and (2) C-v model hypothesizes that all the fluids 

are mobile besides the irreducibly bound wetting phase (Fager- 

lund et al., 2008). The hysteresis means the different behavior 

between drainage process and imbibition process, which is de- 

scribed by the capillary pressure - saturation (PC-SW) function 

(Grant and Gerhard, 2007). The hysteresis effect and condi- 

tional fluids immobility restrict the advance of wetting front 

(Lu et al., 1994), and the wetting phase contains contaminant, 

so the contaminant transport is restricted. Because the hystere- 

sis and conditional immobile fluids are not described by C-v 

model, the migration of PCE simulated by using C-v model 

would transport farther than that by using S-P model at the 

same simulation time. Therefore, the concentration of PCE sim- 

ulated by using S-P model would be higher than that by using 

C-v model at the control planes near the contaminant source.  
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Figure 7. Probability density functions of ILCR at different control planes (ζ) for σ2 = 0.25. (a) The control planes at ζ = 1, 2, 3, 

and 10. (b) The control planes at ζ = 10, 15, 20, and 25. (c) The control planes at ζ = 25, 27, 29, and 31. (d) The control planes at ζ 

= 31, 33, 35, and 37. 

 

 
 

Figure 8. Probability density functions of ILCR for two heterogeneity scenarios (σ2 = 0.25 and 2.25) respectively at some control 

planes. (a) ζ = 15. (b) ζ = 20. (c) ζ = 25. (d) ζ = 26. (e) ζ = 27. (f) ζ = 28. (g) ζ = 29. (h) ζ = 30. (i) ζ = 35. 
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Figure 9. The realizations of k fields with different heterogeneity. (a) and (b) represent the low heterogeneity with σ2 = 0.25, (c) 

and (d) represent the high heterogeneity with σ2 = 2.25. 

 

 
 

Figure 10. Probability density functions of ILCR for two constitutive models (Stone-Parker and Corey-van Genuchten) respectively 

at some control planes. (a) ζ = 10. (b) ζ = 15. (c) ζ = 20. (d) ζ = 25. (e) ζ = 28. (f) ζ = 30. (g) ζ = 31. (h) ζ = 35. (i) ζ = 39. 

 

Similarly, the S-P model based PCE simulation would have 

lower contaminant concentration than the C-v model-based sim- 

ulation at the control planes far away from source zone. Cor- 

respondingly, when calculating ILCR through contaminant’s 

concentration distribution, the HHR assessments would be in-

consistent for the two constitutive models. 

 

5.2. HHR Assessments of the Sandbox Experiment 

5.2.1. Parameter Uncertainty Based on MCMC Simulation 

The frequency distributions of k1 and k2 were generated 

based on the obtained posterior samples, as shown in Figure 11. 

We can find that both two parameters converge to significantly 

narrower posterior distributions from prior distributions through 

Bayesian uncertainty analysis. This means that both two para- 

meters were sensitive to the observation (saturation distribu- 

tion), especially for k1. In addition, the posterior distribution 

of k1 shows the characteristics of bimodal distribution, which 

represents the complexity of parameters’ probability space. 

Thus, it is not easy to determine parameters’ empirical values 

for complex DNAPL transport model. 

In order to verify the identified posterior model parame- 
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Figure 11. The frequency histograms of model parameters by using the posterior samples of MCMC, (a) represents k1 and  

(b) represents k2. 

 

 
 

Figure 12. The verifications of the DNAPL transport model, (a) to (f) represent different verification points (The black dash dot 

line is the observation and the grey zone is the 95% confidence interval). 

 

ters, the obtained posterior predictions are compared with cor- 

responding observations (e.g., saturation). Figure 12 shows the 

comparison between predictions and observations, and only 6 

points in the sandbox domain at the time 50th minute are shown 

here due to the limitation of paper space. The black dash dot 

lines mean the observations, and the grey zones represent the 

95% confidence intervals of the prediction. It is clearly that all 

the six observations are included by their 95% confidence in- 

tervals, and the predictions at other points have the similar per- 

formance and are not shown here. In addition, the predictions 

obtained by using empirical permeability values, e.g., accord- 

ing to the research of Wu et al. (2018), k1 and k2 are defined as 

1.35 × 10-10 and 3.66 × 10-11, respectively, are also compared with 

observations (saturation). Result shows that all predictions 

obtained by using empirical permeability values are apparently 

deviated from the observations, e.g., the saturation prediction at 

x = 29 cm, y = 38 cm is 0.2195 while the observation is 0.1499. 

5.2.2. Impact of Parameter Uncertainty on HHR Assessment 

Based on the obtained posterior parameter samples, the 

probability distribution of ILCR was obtained by using ILCR 

surrogate. As displayed by Figure 13, the distribution of ILCR 

exhibits apparently characteristics of multimodal distribution. 

This means that the probability space of ILCR is very com- 

plex by incorporating model parameters’ uncertainty. By con- 

trast, an empirical ILCR value was calculated by fixing the two 

model parameters at reference values, e.g., k1 was defined as 

1.35 × 10-10 and k2 was defined as 3.66 × 10-11 (Wu et al., 2018). 

Correspondingly, the ILCR value was calculated as 1.357 × 10-

5. This value is close to one peak of ILCR’s probability distribu- 

tion, and apparently smaller than the ILCR value with largest 

probability density. Therefore, it is infeasible and risky to as- 

sess HHR to DNAPL exposure by specifying the parameters of 

contaminant transport model and ignoring parameter uncertainty. 

Due to the heavy contamination source of this case study, 



Y. Pan et al. / Journal of Environmental Informatics 39(1) 67-80 (2022) 

78 

 

the entire probability distribution of ILCR [1.355 × 10-5, 1.365 

× 10-5] exceeds the acceptable risk value (1 × 10-6), as well as 

the empirical ILCR value. In addition, it is possible to search 

for the “best” model parameters through advanced optimization 

algorithms, and then assess HHR based on obtained parameter 

values. However, the Bayesian uncertainty analysis based HHR 

assessment could provide information that is more flexible for 

decision makers. We can obtain a credible interval of ILCR at 

a certain confidence level, for example, under 95% confidence 

level, the ILCR’s credible interval is [1.357 × 10-5, 1.363 × 10-5] 

in this sandbox experiment. In addition, the assessment (e.g., 

ILCR) based on specific model parameters may underestimate 

or overestimate the HHR, which may lead to the risk of deci- 

sion-making failure. 

 

 
 

Figure 13. Blue line represents the probability density 

function of ILCR, and the red dash line represents the ILCR 

calculated by using empirical parameter values. 

6. Summary and Conclusion 

Human health risk (HHR) assessment is necessary for the 

remediation of contaminated site, which is always conducted 

by building contaminant transport model. The present paper 

evaluated the influences of model uncertainties on the HHR 

assessment to DNAPL exposure, and the metric of Incremen- 

tal Lifetime Cancer Risk (ILCR) was used to quantify HHR. 

Based on a synthetical DNAPL transport model and a sand- 

box DNAPL transport experiment, we evaluated the uncertain- 

ties of aquifer permeability heterogeneity and constitutive mod- 

el structure on DNAPL transport modeling and HHR assess-

ment through Bayesian uncertainty analysis. The results from 

these two case studies could provide insights into the uncertain- 

ty quantification and reduction for contaminant transport simu- 

lation based HHR assessment under field conditions. 

The key findings can be summarized as follows: 

(1) Compared with the low heterogeneity in aquifer’s per- 

meability field, the high heterogeneity produces lower average 

ILCR value at the control planes near the source zone, and high-

er average ILCR value at the control planes far away from the 

source zone. In addition, for a specific control plane, the ILCR’s 

probability distribution of high heterogeneity has a larger vari-

ance than that of low heterogeneity. 

(2) The HHR assessments would be inconsistent for the 

two constitutive models (Stone-Parker and Corey-van Genuch- 

ten) because they use different physical mechanisms to describe 

the transport of DNAPL. Compared with the HHR assessment 

based on Corey-van Genuchten model, the mean of ILCR’s 

probability distribution produced by using Stone-Parker model 

is larger at the control planes near the source zone, and smaller 

at the control planes far away from the source zone. 

(3) It is infeasible and risky to assess HHR to DNAPL ex- 

posure by specifying the parameters of contaminant transport 

model and ignoring parameter uncertainty. In addition, the Bay- 

esian uncertainty analysis based HHR assessment could provide 

more information for decision makers, such as the credible in- 

terval of ILCR at a certain confidence level. 

(4) The sparse grid (SG) surrogate is an effective way to 

overcome the problem of computation burden caused by the 

larger number of model executions in Bayesian uncertainty quan- 

tification. Based on SG technique, the likelihood surrogate and 

ILCR surrogate are built to evaluate the impact of model pa- 

rameter uncertainty on HHR assessment. 

The uncertainties of aquifer heterogeneity and constitu- 

tive model structure on DNAPL transport modeling and HHR 

assessment are evaluated in this study. However, the interac- 

tive impact of these factors is not quantitatively analyzed. The 

Bayesian model averaging (Hoeting et al., 1999; Raftery et al., 

2005) or data-driven error model method (Kennedy and O’Hagan, 

2001; Xu et al., 2017) provide an effective framework to quan- 

tify model parameter and structure uncertainty, and this would 

be the focus in the subsequent studies. In addition, the behav- 

ioral and physiological factors are not considered in this work, 

the ingestion rate and exposure duration would be considered 

as important influencing factors in our future study. 
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