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ABSTRACT. Terrestrial ecosystems of China play an important role in global carbon cycle. Identifying spatial-temporal variation of 

vegetation and their driving forces in China is necessary. This study used recent Enhanced Vegetation Index (EVI) data (2000 to 2019) 

to analyze interannual changes of vegetation activity in mainland China, and examined their responses to climatic (precipitation and tem- 

perature) and anthropogenic factors (human land-use management such as afforestation, cultivation and urbanization). The results show- 

ed an increasing trend in EVI over the 20-year period, which strikingly prominent in Loess Plateau. Besides, the greening rate of mainland 

China over 2009 ~ 2019 was weaker than that for 2000 to 2008. The wetter and warmer climatic condition in recent 20 years is conducive 

to vegetation growth in mainland China. In addition, human activities, such as implementation of ecological restoration programs, con- 

struction of irrigated areas and heavy fertilizer use promote the vegetation growth in forestland and cultivated land. While the browning 

in some vegetated land might relate to urbanization. Although climatic and anthropogenic factors both contributed to vegetation change, 

our results indicated that the anthropogenic factors were the key drivers. In more than half of the significant greening or browning region 

(51.2%), EVI change were dominant by human activities (explain more than 60% of the significant trend). However, climate change was 

a dominant driver of EVI change over only 9.9% of significant greening or browning region. The findings of this study provided details 

of EVI variations and their mechanics in mainland China, which can provide useful information for government organizations.  
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1. Introduction 

Vegetation plays an important role in energy transfer, car- 

bon cycle, water balance and climate regulation, acting as a key 

component of terrestrial ecosystem (Bégué et al., 2011). The 

satellite remote sensing provides an advanced way to monitor 

vegetation activity with continuous spatial-temporal products. 

Vegetation greening trend has been detected at regional and 

continental scales based on the satellite measurements, espe- 

cially in China and India (Zhu et al., 2016; Zhao et al., 2018). 

However, vegetation browning trends were also found in some 

areas of Southern Hemisphere (Zhao and Running, 2010). In 

general, both climatic and anthropogenic environmental changes 

would affect vegetation characters, such as distribution and pro-

ductivity, which might lead to vegetation greening and brown-

ing (Kuenzer et al., 2015; Zheng et al., 2019). Investigating the 

vegetation changes and their responses to environmental fac-

tors can improve stakeholders’ ability of prediction, mitigation 

and adaption in changing environment (Sitch et al., 2008; Piao 

et al., 2014). The Normalized Difference Vegetation Index  
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(NDVI) and Enhanced Vegetation Index (EVI) have been wide-

ly used for global and local monitoring of vegetation conditions 

(Setiawan et al., 2014; Peng et al., 2019; Ahmed and Singh, 

2020; Vijith and Dodge-Wan, 2020). By minimizing canopy 

background variations and removing residual atmosphere con-

tamination, EVI has the advantage in monitoring sensitive and 

high biomass conditions comparing with NDVI (Huete et al., 

2002; Fraga et al., 2014). 

The precipitation and temperature are important climatic 

factors for vegetation growth and have been selected for ana- 

lyzing the effect of climate change on vegetation activity in re- 

gional or global scales (Daham et al., 2018; Muradyan, et al., 

2019; Szabó, et al., 2019). Human land-use management also 

has a profound impact on growth and greening of vegetation 

(Zhu et al., 2016). Vegetation change and relationship with di- 

rect or indirect drivers are often revealed by linear regression 

and correlation analysis (Raynolds et al., 2008; Zhang et al., 

2019). Generally speaking, the influences of environmental  

perturbations and changes are spatial heterogeneity and com- 

plexity. Previous studies proven that vegetation was limited to 

temperature in northern high-latitudes while limited to water in 

arid and semi-arid regions (Piao et al., 2009; Zhou et al., 2015; 

Zhao et al., 2018). For instance, large-scale greening in Africa 

were mainly caused by precipitation (Adole et al., 2018). The 

rising temperature in Tibetan Plateau enhances photosynthesis  
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and lengthens the growing season, which has positive effects 

on vegetation growth in Tibetan Plateau (Xu et al., 2013). The 

urbanization and deforestation activities were also important 

factors for vegetation browning in local areas (Kumar et al., 

2010; Buyantuyev and Wu., 2012; Du et al., 2019).  

Terrestrial ecosystems of China are important to global ca- 

rbon balance because of rich diversity and large area (Piao et 

al., 2009). Change in the vegetation is one key factor affecting 

carbon sink/source function. Therefore, understanding the spa- 

tial-temporal variation of terrestrial vegetation and their driving 

forces in China is necessary. The observed records shown that 

the surface temperature increased by 1.1 °C since 1950s, which 

was more obvious than many regions in Northern Hemisphere. 

Although the increase trend of precipitation was not significant 

for the whole China, but change was different in diverse re- 

gions (Yuan et al., 2017). Besides, mainland China has experi- 

enced rapid urbanization in recent several decades (Deng et al., 

2015). It was observed that the urban area in mainland China 

increased by 6.11 × 104 km2 from the late 1980s to mid-2010 

(Li et al., 2018). As a result of land use change and population 

increase, nearly 90% of grasslands in China have been degrad- 

ed (Wang et al., 2016). It was reported that approximately 9 

million hm2 of newly forestland and grassland were converted 

from cultivated land and about 14 million hm2 of unused land 

was afforested by the late 2000s (Chen et al., 2009). Changes 

in these driving factors of vegetation growth led to restoration 

or degradation. But the extent of impact caused by climate 

change and human activities is still ambiguous. The research 

carried by Shi et al. (2020) showed that human activities is the 

definitive factor for greening in China, with contribution pro- 

portion more than 100% in most regions. While Zhang et al. 

(2020) found that in more than half area of the Yangtze River 

and Yellow River Basin, the influence of climate change on 

vegetation was greater than that of human activities. 

This research took the China as the study area and ex- 

plored the effects of climatic and anthropogenic environmental 

factors on EVI variation. The changes of precipitation and tem- 

perature were selected as the mainly climatic environmental 

factors. While for the anthropogenic environmental factors, we 

discussed the effects of urbanization, cultivation and afforesta- 

tion by using nighttime lights data, land use/land cover data and 

other record data from China Statistical Yearbook. We ad- 

dressed the following key issues: (i) analyze spatial-temporal 

variation of EVI in mainland China; (ii) explore the relation- 

ship between vegetation growth and different driving forces; 

(iii) distinguish and quantify the contribution of different driv- 

ing forces to the change in EVI. The remaining sections of this 

paper were organized as follows: the study area and datasets 

were introduced in Section 2; Section 3 described the method- 

ologies used in this study. The analysis results were shown in 

Section 4. And the discussion and conclusions were summa- 

rized in Section 5 and 6 respectively. 

2. Study Area and Data 

2.1. Study Area 

China (Latitude: 3°51′ N to 53°33′ N; Longitude: 73°33′ E 

to 135°05′ E) locates in the Northern Hemisphere subtropical 

and mid-latitude area, covering an area of 9.63 million km2 

(Figure 1). The elevation of mainland China decreases from  

 

 
 

Figure 1. The location of China. 
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more than 5,000 m in west to less than 10 m in east, with a 

three-ladder-like distribution. The country has five main cli- 

mate zones, namely, temperate monsoon, subtropical monsoon, 

tropical monsoon, plateau mountain, and temperate continental 

(Wang et al., 2017). The average annual precipitation is about 

300 to 1200 mm from north to south, with a spatial average of 

643 mm (Yuan et al., 2017). The average annual temperature 

ranges from −16 to 26 °C with a spatial average around 10 °C 

(Yang et al., 2020). The land cover in the mainland China 

consists primarily of grassland (31.6%) and forestland (23.4%). 

Water area and construction land are less dominant land cover 

types, accounting for 2.9 and 2.3% of the total area. The veg- 

etation in China changes among regions greatly. The type of 

vegetation includes: evergreen broadleaf forest, deciduous broad- 

leaf forest, mixed forest, woody savannas, croplands, grass- 

lands and shrublands. According to the study carried by Xu et 

al. (2002), we divided mainland China into nine regions, in- 

cluding Northeast China Plain (Region A, NCP), Northern arid 

and semiarid region (Region B, NASR), Huang-Huai-Hai Plain 

(Region C, HHHP), Loess Plateau (Region D, LP), Qinghai-

Tibet Plateau (Region E, QTP), Middle-lower Yangtze Plain 

(Region F, MLYR); Sichuan Basin and surrounding regions 

(Region G, SBSR), Southern China (Region H, SC) and Yun- 

nan-Guizhou Plateau (Region I, YGP). The shapefile of these 

nine regions’ boundary can be download from Resource and 

Environment Science and Data Center (RESDC, http://www. 

resdc.cn/). 

 

2.2. Datasets 

2.2.1. EVI Data 

Spatial-temporal variation of vegetation coverage can be 

quantified by EVI. In this research, the EVI data was obtained 

from global monthly MOD13A3 products (version: 006), which 

was available from https://earthdata.nasa.gov/. The data was in 

HDF format covering 2000 to 2019 and 1 km spatial resolution. 

With Maximum Value Composite (MVC) approach and ArcGIS 

10.3 software, the annual EVI for the mainland China was de- 

rived (Figure 2(a)). The value of EVI is between −0.2 and 0.05 

for snow, inland water bodies, bare soil, sparse vegetation and 

other non-vegetated areas. In this study, we selected the areas 

with EVI ≥ 0.05 as the vegetated land (Wang et al., 2013). 

 

2.2.2. Meteorological Data 

The gridded meteorological data during 2000 to 2019 was 

obtained from China Ground Precipitation 0.5° × 0.5° Grid 

Dataset V2.0 and China Ground Temperature 0.5° × 0.5° Grid 

Dataset V2.0, which are provided by National Meteorological 

Information Center (NMIC, http://data.cma.cn/). These data- 

sets (a total of 3,825 grids) were based on the daily observation 

from 2,474 national meteorological stations and generated by 

thin plate spline and the GTOPO30 (Global 30 arc-second ele- 

vation) DEM data (Figure 2(b)). The gridded data has been 

projected and resampled in order to ensure the same coordinate 

system and resolution (1 km × 1 km) with MOD13A3 products. 

 
 

Figure 2. The datasets used in this study. (a) EVI data (take 2019 year as example); (b) Box-points for meteorological data; (c) 

DMSP-OLS data (take 2013 year as example); (d) LULC data (take 2015 year as example). 
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2.2.3. Nighttime Lights Data 

Defense Meteorological Satellite Program (DMSP) Oper- 

ational Linescan System (OLS) dataset is widely used as an in- 

dicator of human activity. The radiance in each pixel is quali- 

fied by a Digital Number (DN) value ranging from 0 to 63 (Fig- 

ure 2(c)). A higher value indicates more lights emitted by cities 

and more human activities. The DMSP-OLS global stable light 

images from 2000 to 2013 can be download from RESDC (ht 

tp://www.resdc.cn/). Nighttime lights data of mainland China 

was extracted and projected by ArcGIS 10.3 software in order 

to ensure the same coordinate system with EVI data. Although 

the timespan of DMSP-OLS dataset is seven years shorter than 

that of EVI dataset, the results still make sense in the context 

of rapid urbanization. 

 

2.2.4. Land Use/Land Cover Data 

Land use/land cover (LULC) data with a spatial resolu- 

tion of 1 km × 1 km for the years 2000 and 2015 was obtained 

from RESDC (http://www.resdc.cn/). This dataset is generated 

by remote sensing images with manual visual interpretation 

method. The quality has been controlled and integration has 

been checked by RESDC. The types of LULC were divided in- 

to six categories in this study, including cultivated land, forest- 

land, grassland, water area, construction land and unused land 

(Figure 2(d)). Comparing the land use/land cover maps for 

2000 and 2015, the expanded construction land can be obtained. 

 

2.2.5. Statistical Data from National Bureau of Statistics of 

China 

Annual statistical data about forest area, accumulated af- 

forested area, forest coverage, harvested area, total food pro- 

duction, effective irrigation area and amount of fertilizer use 

can be obtained from National Bureau of Statistics of China 

(NBSC, http://www.stats.gov.cn/). Statistical data about forest 

(e.g., forest area and coverage rate, afforestation) covered the 

period 2004 to 2018. Statistical data about cultivated land (e.g., 

harvested area, total food production, effective irrigation area 

and amount of fertilizer) covered the period 2000 to 2018. 

3. Methodology 

In this study, the linear regression and moving t-test were 

used to investigate the vegetation trend and abrupt change, in 

both region scale and pixel scale. Then these spatial-temporal 

variations were discussed in regard to climate factors and hu- 

man activities. For climate factors, precipitation and temper- 

ature were selected as the main factors influenced the EVI 

change. For human activities, we focused on the urbanization, 

cultivation and afforestation. Finally, the impacts of climate 

change and human activities on vegetation variation were quan- 

tified by Residual trend (RESTREND) analysis (Figure 3). 

 

3.1. Trend Analysis of EVI and Climatic Factors 

3.1.1. Linear Regression and the Slope 

To identify the inter-annual trend of variable, the linear 

regression method was adopted to eliminate the increase or 

decrease rate of EVI and climatic factors (Tian et al., 2019), 

which can be calculated as follows: 
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where Slope is the linear slope of the time series variable, which 

can be used to characterize the increase or decrease rate during 

a given study period; n is the number of years; xi is the value of 

variable for the ith year (i = 1, 2, …, n). 

The F-test was used to test the significance of trend of 

variable, and F-value can be calculated as follow: 
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where
ix is the regression value of variable in i years and x is the 

average value of variable for a given period. 

 

3.1.2. Abrupt Change Detection by Moving t-Test 

Moving t-Test is one of widely used methods for abrupt 

change detection, which tests a hypothesis based on a differ- 

ence between sample means. For the time series (xi, i = 1, 2, …, 

n), the statistic values (t) can be calculated as Equations (3) and 

(4): 
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where
1 2( )x x , s1(s2) and n1(n2) are the average value, standard 

deviation and length a subsequences. In this research, n1 = n2 = 

5. Given a significant level α, if |ti| > tα, the point (ith year) could 

be regarded as abrupt change point for the time series (EVI or 

climatic factors). 

 

3.2. Correlation Analysis and Identification of Dominate 

Climate Factors 

3.2.1. Partial Correlation Coefficient and Multiple Correlation 

Coefficient 

To assess the effects of precipitation and temperature on 

EVI in mainland China, Multiple correlation coefficient (Rz, xy) 

and partial correlation coefficient (rzx, y or rzy, x) were employed 

to analyze the correlation between EVI and major climatic fac- 

tors (Yin et al., 2020). These two kinds of coefficients can be 

calculated as follows: 
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Figure 3. The flowchart of the investigation of vegetation change. 

 

① Partial Correlation Coefficient 
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where rzx, y denotes the partial correlation coefficient of vari- 

able x and variable z, holding variable y constant. rzx, rzy, rxy de- 

notes correlation coefficients of variables x and z, y and z, and 

x and y respectively. The partial correlation coefficient can be 

used for quantifying relationship between EVI and precipita- 

tion or relationship between EVI and temperature. The signifi- 

cance of partial correlation was estimated by t-test. Test statis- 

tic t defined as: 
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where n and m are number of samples and the number of inde- 

pendent variables, respectively: 

 

② Multiple Correlation Coefficient 
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where Rz, xy denotes the multiple correlation coefficient of de- 

pendent variable z and independent variable x and y. The mul- 

tiple correlation coefficient can be used for quantifying rela- 

tionship between EVI and precipitation or relationship between 

EVI and climatic factors. The significance of multiple correla- 

tion was estimated by F-test. Test statistic F defined as: 
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where n and k are number of samples and the number of inde- 

pendent variables, respectively. 

3.2.2. Identifying Climatic Factors on EVI Changes 

The dominant climate factors affecting the changes in EVI 

can be identified based on the correlation analysis mentioned 

above. According to the previous studies carried by Yin et al. 

(2020), the dominant climate factors were divided into four cat- 

egories. Classification criteria was illustrated in Table 1. FCLI 

is the statistic F of multiple correlation between EVI and major 

climatic factors; tPRE (tTEM) is the statistic t of partial correlation 

between precipitation (temperature) and EVI. 

 

3.3. Contribution Analysis of Different Driving Forces to 

the Change in EVI 

3.3.1. Residual Trend (RESTREND) Analysis 

For a given region and period, the vegetation growth is in- 

fluenced by both climatic and anthropogenic factors. We can 

decompose observed EVI into two parts, namely EVI deter- 

mined by climate and EVI determined by human activities, 

which can be written as: 

 

, ,    i c i h iEVI EVI EVI   (9) 

 

where EVIi is observed EVI value for t-year; EVIc, i and EVIh, i 

represent EVI determined by climate and EVI determined by 

human activities respectively. EVIc, i can be predicted by Multi- 

variate Linear Regression (MLR) and EVIh, i can be identified 

after removing the climate influence (Herrmann et al., 2005; 

Wessels et al., 2007): 

 

,   ( , )c i i iEVI f PRE TEM  (10) 

 

,     ( , )h i i i iEVI EVI f PRE TEM   (11) 

 

where f(PREi, TEMi) is EVI estimated from climate factors, 

e.g., precipitation and temperature. 

 

3.3.2. Contribution Calculation of Driving Forces 

Based on Equation (1), a positive Slope in EVI represents 
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vegetated lands showing greening, whereas a negative Slope 

denotes vegetated lands showing browning. Thus, six possible 

scenarios, including vegetated lands greening/browning caused 

by climate change (CC), vegetated lands greening/browning 

caused by human activities (HA), and vegetated lands green- 

ing/browning caused by both CC and HA. Contribution propor- 

tions of driving forces in these six scenarios can be quantified 

according to Table 2. 

4. Results 

4.1. Spatial Pattern of Multi-Year Average EVI 

With the 20-year (2000 to 2019) EVI dataset, the spatial 

pattern of average EVI was calculated and showed in Figure 4. 

Over the entire mainland China, the average EVI ranged from 

0.05 to 0.88 with an average value of 0.38 from 2000 to 2019. 

In general, the EVI is lower in the northwest and increases 

toward the southeast. The EVI was normally lower than 0.30 in 

the Northwest China, where barren land is widely distributed. 

The precipitation is less and/or temperature is lower, which are 

not favorable to vegetation growth. However, the EVI in most 

southern China is higher than 0.50. This area is characterized 

by warmer and wetter climate and plenty evergreen forests. 

Based on the spatial distribution of average EVI, the rela- 

tionship between EVI and geographical factors (longitude, lati- 

tude and elevation) was illustrated in Figure 5. A significantly 

increasing rate of EVI as the longitude increased can be ob- 

served, defining a green rate of 0.009 per degree in longitude 

(Figure 5(a)). Between 15° E to 40° E, the EVI decreases by 

0.019 per degree in latitude. However, the EVI increases with 

rising latitude by 0.025 per degree between 40° E to 55° E (Fig- 

ure 5(b)). When the elevation is less than 3,500 m, EVI is less 

sensitive to the change of elevation. The EVI reduces by 0.005 

as the elevation increases by every 100 m. When the elevation 

is more than 3,500 m, EVI is more sensitive to the change of 

elevation. A 100 m increase in elevation leads to a decrease of 

about 0.01 in EVI (Figure 5(c)). 

 

 
 

Figure 4. The average EVI during period 2000 to 2019. 

(*Note: the grey areas filled with grey color represent non-

vegetated areas (EVI < 0.05)). 

 

4.2. Spatial-Temporal Variation of EVI 

4.2.1. Interannual Variations of EVI 

Figure 6 illustrated the interannual variation of EVI at the 

entire mainland China, showing a significant increase trend 

from 2000 to 2019 (Slope = 0.002/yr, p < 0.05). A break point 

in 2009 can be detected by moving t-test. The increasing rates 

were 0.0028/yr (p < 0.05) and 0.0013/yr (p < 0.05) for period 

2000 to 2009 and period 2010 to 2019 respectively, indicating 

a relatively weak positive trend in recent 10 years. The multi- 

year average EVI was 0.393 after 2009, increasing by 6.3% 

compared with that before 2009. 

 

Table 1. Classification Criteria for Dominant Climate Factors Identification 

Driving factors Criteria 

Precipitation FCLI < F0.1, tPRE < 0.05, tTEM ≥ 0.05 

Temperature FCLI < F0.1, tPRE ≥ 0.05, tTEM < 0.05 

Driving of temperature and precipitation 
Weak FCLI < F0.1, tPRE ≥ 0.05, tTEM > 0.05 

Strong FCLI < F0.1, tPRE < 0.05, tTEM < 0.05 

 

Table 2. Contribution Calculation of Driving Forces to the Change in EVI 

Scenarios 
Slope Contribution proportion (%) 

EVI EVIc EVIh CC HA 

Greening caused by CC and HA (GCH) > 0 > 0 > 0 
 

 
cSlope EVI

Slope EVI
  

 

 
hSlope EVI

Slope EVI
 

Greening caused by CC (GC) > 0 > 0 < 0 100 0 

Greening caused by HA (GH) > 0 < 0 > 0 0 100 

Browning caused by CC and HA (BCH) < 0 < 0 < 0 
 

 
cSlope EVI

Slope EVI
 

 

 
hSlope EVI

Slope EVI
 

Browning caused by CC (BC) < 0 < 0 > 0 100 0 

Browning caused by HA (BH) < 0 > 0 < 0 0 100 
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Figure 5. The relationship between average EVI and longitude (a), latitude (b) and elevation(c). 

 

 
 

Figure 6. Interannual variation of EVI from 2000 to 2019. The small inset figure shows the moving t-Test result of EVI series. 

 

Table 3. The Breakpoint and Slope of Spatial Average EVI Curve for Each Sub-Rregion 

Region Breakpoint 

Muti-year average EVI Slope (EVI unit per year) 

Phase 1 (before 

breakpoint 

year) 

Phase 2 (after 

breakpoint 

year) 

2000 to 2019 
Phase 1 (before 

breakpoint year) 

Phase 2 (after 

breakpoint 

year) 

2000 to 2019 

NCP 2009 0.545 0.583 0.564 0.0044* 0.0010 0.0035* 

NASR 2010 0.231 0.255 0.242 0.0014 0.0019 0.0022* 

HHHP 2004 0.490 0.521 0.513 0.0115* −0.0002 0.0018* 

LP 2011 0.411 0.465 0.433 0.0065* 0.0012 0.0054* 

QTP 2008 0.226 0.232 0.229 0.0002 0.0002 0.0006* 

MLYR 2004 0.512 0.538 0.527 0.0048* −0.0001 0.0023* 

SBSR 2008 0.478 0.498 0.493 0.0008 0.0018* 0.0019* 

SC 2004 0.501 0.541 0.529 0.0027 0.0031* 0.0037* 

YGP 2005 0.516 0.552 0.543 0.0020 0.0024* 0.0031* 

Note: * means the trend is significant with p < 0.05.  

 

The breakpoint and slope for each sub-region was list in 

Table 3. It can be concluded that spatial average EVI for each 

sub-region increased during period 2000 to 2019, with a rate of 

0.0005 to 0.0054 per year. Each of the sub-basins showed a 

significant increase (α = 0.05) in EVI during study period. The 

green rate of LP is the highest among all the sub-regions. It is 

mainly because a series of ecological construction and protec- 

tion projects has been implanted since 1999. And plenty cul- 

tivated land has been returned to forestland or grassland (Xie 

et al., 2014; Li and Wang, 2019). The breakpoints of most sub-

regions occurred at the late 2000s and early 2010s. The spatial 

average values of EVI in Phase 2 (after breakpoint) increased 

by 3.0 to 13.2% compared with those in Phase 1 (before break- 

point). In NCP and LP, the increasing rate was slower in Phase 

2 than that in Phase 1. While opposite change character showed 

in NASR, SBSR, YGP and SC. In HHHP and MLYR, the EVI 

showed a decreasing-to-increasing trend, which is different from 

the consistent increasing trend detected in other sub-regions. 

T
-s

ta
ti
s
ti
c
s
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Figure 7. Spatial distribution of the trend in EVI. The small 

inset figure shows spatial pattern of trend significance levels. 

The region filled in blue is significant at p < 0.05. 

 

4.2.2. Spatial Distribution of EVI Trends 

The trends (slope) of EVI from 2000 to 2019 differed spa- 

tially throughout mainland China (Figure 7). The slight de- 

creasing trend (−0.0025 ≤ Slope < 0) is mainly concentrated in 

QTP and SBSR, especially in Tibet, southern Qinghai and 

Western Sichuan. The sharp decreasing trend (Slope < −0.005) 

is scattered in HHHP and Yangtze River Delta, which charac- 

terized by rapid economic development and urbanization. The 

EVI increased in 82.8% of the study area, and the significant 

increasing trend (p < 0.05) accounted for 42.1% of the vege- 

tated land. In contrast, about 17.2% of the area showed a de- 

creasing trend. The area with a significant decreasing trend (p 

< 0.05) in EVI accounted for 2.7% of the total area. Create Ran- 

dom Points Tool provided by ArcGIS 10.3 software was used 

to randomly select 50,000 pixels from all the pixels in vegetat- 

ed land in mainland China (a total of 8,494,651 pixels, resolu- 

tion of each pixel is 1 km × 1 km). The break point of EVI se- 

ries in each pixel was detected by Moving t-test. Then period 

2000 to 2019 was divided in Phase 1 (before break point) and 

Phase 2 (after break point). There were 26,703 pixels whose 

EVI series had break point. The EVI trends of these 26,703 pix- 

els for Phase 1 and Phase 2 was compared by Figure 8. EVI in 

32.4% of the points exhibited consistent increasing trend in 

both Phase 1 and Phase 2. In contrast, approximately 20.6% of 

the points showed consistent decreasing trend in these two 

phases. The EVI increasing-to-decreasing trend and decreas- 

ing-to-increasing trend accounted for 27.9 and 19.1% of the 

points, respectively (Figure 8(a)). In addition, about 44.8% of 

the points had a lower change rate in Phase 2, with a lower ab- 

solute slope value than Phase 1. This statistic indicated that veg- 

etation experienced slower greening or degradation in Phase 2 

(Figure 8(b)). 

 

4.3. Relationship between EVI and Climate Change 

4.3.1. Spatial-Temporal Variation of Precipitation and 

Temperature 

The trends of precipitation and temperature over the whole 

study area were illustrated in Figure 9. The annual precipitation 

decreased from 631.5 mm in 2000 to 594.5 mm in 2009. Then 

it showed an increase trend with some fluctuation and reach to 

628.4 mm in 2019, indicating a decreasing-to-increasing trend 

(Figure 9(a)). A consistent increasing trend of annual average 

temperature can be detected in Figure 9(b). The temperature for 

the whole study area rose at a rate of 0.05 °C/yr during period 

2000 to 2009 and 0.08 °C/yr during period 2010 to 2019. The 

wetter and warmer climate in recent years might be an impor- 

tant driver for the greener vegetation. 

As indicated in the spatial trend distribution map (Figure 

10), the positive precipitation changes mainly be found in Most 

of China, especially in NCP and MLYR. While southern HHHP 

and western YGP have witnessed less precipitation in recent 

two decades. Previous research also detected that these two

 

 
 

Figure 8. Scatter-plot for EVI slope (a) and histogram for difference of absolute slope value (b) (Note: for subfigure (a), 

percentage number means the proportion of points in corresponding quadrant). 
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Figure 9. Interannual variation of precipitation (a) and temperature (b) from 2000 to 2019. 

 

 
 

Figure 10. Spatial distribution of the trends in precipitation (a) and temperature (b). The small inset figures show spatial pattern of 

trend significance levels. The region filled in blue is significant at p < 0.05. 

 

regions were suffered from frequent droughts since 2000s (Yuan 

et al., 2015; Yuan et al., 2017). Areas with significantly posi- 

tive trend and negative trend (p < 0.05) accounted for 21.2 and 

0.9% of the total respectively, indicating precipitation trends 

in most of mainland China were non-significant (Figure 10(a)). 

Increasing temperature trends were observed over 96.1% of 

mainland China during 2000 to 2019. Area with significant in- 

crease trend (p < 0.05) accounted for 36.7% of the total area, 

which were mainly located in the QTP, HHHP and MLYR 

(Figure 10(b)). 

 

4.3.2. EVI Changes Related to Major Climatic Factors 

The response of EVI to major climatic factors was ex- 

plored by multiple linear regression. The multiple correlation 

coefficients were illustrated in Figure 11(a). Areas with high 

multiple correlation coefficients mainly distributed in northern 

China, indicating the higher climate contributions to vegetation 

growth in these regions. Partial correlation between EVI and 

climate factors was showed in Figure 11(b) and Figure 11(c). 

The EVI was positively correlated with precipitation in majori- 

ty pixels (73.2%, with significant correlation coefficients in 

18.6% of pixels), which were mainly distributed in Inner Mon- 

golia and Qinghai Province. The significant negative correla- 

tion (only 1.3%) primarily occurred in Anhui Province and Jiang- 

su Province (Figure 11(b)). Area with positive correlation be- 

tween EVI and temperature accounted for 63.4% of the study 

area. And the significant positive correlation (6.7% of the study 

area) was mainly observed in QTP. Pixels with significant neg-

ative correlation only accounted for 1.8% and scattered in 

HHHP (Figure 11(c)). Dominant climatic factors affecting EVI 

in vegetated lands during period 2000 to 2019 were showed in 

Figure 11(d). Areas with EVI significantly affected by climate 

factors (p < 0.1) accounted for 15.0% of the vegetated lands. 

Areas dominated by precipitation accounted for 63.5% of the 

total significant region, widely distributing in NASR (especial- 

ly Inner Mongolia) and QTP (especially Qinghai Province). 

While areas dominated by temperature accounted for 7.7% of 

the total significant region, mainly distributed in MLYR (espe- 

cially Jiangxi Province). About 28.8% of the total significant 

areas were dominated by both temperature and precipitation, 

mainly distributing in QTP.  
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Figure 11. Spatial distribution of correlation coefficient between EVI and major climatic factors and driving factors: (a) Multiple 

correlation coefficient; (b) Partial correlation coefficient between EVI and precipitation; (c) Partial correlation coefficient between 

EVI and temperature; (d) Climate factors significantly affecting EVI. The small inset figures in (a) to (c) show spatial pattern of 

correlation significance levels. The region filled in blue is significant at p < 0.05. 

 

Table 4. Correlation of EVI with Climate Factors over the Period 2000 to 2019 

Region NCP NASR HHHP LP QTP MLYR SBSR SC YGP China 

EVI vs. PRE&TEM 0.603** 0.859** 0.091 0.460 0.526* 0.62** 0.521** 0.597** 0.359 0.580** 

EVI vs. PRE 0.555** 0.856** 0.077 0.285 0.396* 0.237 0.289 0.049 0.129 0.476** 

EVI vs. TEM 0.050 0.119 0.012 0.297 0.443* 0.571** 0.450** 0.583** 0.335 0.424* 

Note: * means the trend is significant with p < 0.1; ** means the trend is significant with p < 0.05. 

 

The relationship between EVI and major climatic factors 

over the period 2000 to 2019 in nine sub-regions and the entire 

mainland China were also analyzed (Table 4). The spatial av- 

erage EVI in mainland China had significant positive corre- 

lation with climatic factors (REVI-PRE&TEM = 0.580, p < 

0.05). And precipitation was more influential for the vegetation 

growth in mainland China. However, EVI’s response to climat- 

ic variations was different for different sub-regions. It can be 

seen from Table 4 that for NCP and NASR, EVI correlated sig- 

nificantly with precipitation. All these two sub-regions located 

in northern China, with limited rainfall resource. Thus, the veg- 

etation is more sensitive to precipitation. In contrast, EVI cor- 

related strongly with temperature in MLYR, SBSR and SC, 

where is located in southern China. Vegetation growth is re- 

stricted by thermal conditions. In QTP, both precipitation and 

temperature affected vegetation growth significantly. 

 

4.4. Relationship between EVI and Human Activities 

4.4.1. EVI Changes Related to Urbanization 

The distribution of annual nighttime light trends (slope) 

was illustrated in Figure 12. Area exhibited significant increas- 
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ing DN trend (α = 0.05) accounted for 13.3% of mainland Chi- 

na. The spatial distribution of the trend in DN indicated the on- 

going urbanization in China since 2001, especially in HHHP, 

Yangtze River Delta of MLYR and SC. The scatterplot of sig- 

nificant EVI trend and significant DN trend were generated and 

illustrated in Figure 13. About 73.8% of the points showed both 

increasing trends in EVI and DN (Quadrant I), that is to say 

most vegetation still grew well during the urbanization period. 

But we can find that the faster greening rate were found in the 

area with slower urbanization. Approximately 26.1% of the 

point showed increasing EVI and decreasing DN (Quadrant II) 

or decreasing EVI and increasing DN (Quadrant IV), indicating 

the negative effects of urbanization. Only 0.1% of the points 

showed both decreasing trends in EVI and DN (Quadrant III), 

probably due to timber production (Figure 13). 

 

 
 

Figure 12. Spatial distribution of the trend in DN. The small 

inset figure shows spatial pattern of trend significance levels. 

The region filled in blue is significant at p < 0.05. 

 

The spatial distribution of the trend in DN (Figure 12) in- 

dicated a rapid urbanization in China since 2000. According to 

land use/land cover maps, the construction land in mainland 

China has expanded from 1.70 × 105 km2 in 2000 to 2.18 × 105 

km2 in 2015, with an average annual growth rate of 1.67%. The 

shrinks of cultivated land, forestland and grassland contributed 

to 66.4, 12.6 and 10.7% of urban expansion, respectively. It can 

be concluded that urban expansion has led to a massive loss of 

cultivated lands in mainland China. The expanded construction 

land was primarily concentrated HHHP, MLYR and SC (Fig- 

ure 14), which coincided with research carried by Li et al. 

(2018). Areas with significant EVI decrease were 4.67 × 104, 

6.86 × 104 and 1.22 × 104 km2 for HHHP, MLYR and SC re- 

spectively. And it was clear in the Figure 14 that these areas 

mainly located in the construction land, especially the new ex- 

pended construction land. During the urbanization process, 

plenty vegetation covers has been replaced by impervious sur- 

faces, leading to the reduction in EVI. Similarly, the expand of 

construction land in HHHP, MLYR and SC was mainly caused 

by the decrease of cultivated land. In HHHP, MLYR and SC, 

about 6.57 × 103, 12.27 × 103 and 3.47 × 103 km2 of the original 

cultivated land have been turned into construction land, which 

were 83.1, 78.7 and 55.2% of the newly increased construction 

land. In regions where cultivated land was turned into construc- 

tion land, the EVI change rates were −0.405 × 10-2, −0.415 × 

10-2 and −0.006 × 10-2/yr in HHHP, MLYR and SC, respectively. 

 

 
 

Figure 13. Scatterplot of EVI trends (p < 0.05) and DN trends 

(p < 0.05). 

 

4.4.2. EVI Changes Related to Forests and Croplands 

Statistical data of annual forest and croplands in China was 

showed in Tables 5 and 6, which was provided by National Bu- 

reau of Statistics of China (https://data.stats.gov.cn/). In recent 

10 years, the forest area has increased by 19.6%, mostly as a 

result of expanding natural forests and afforestation. The green- 

ing trends in forest benefit from several programs, such as 

Three North Shelterbelt Development Program, Beijing-Tian- 

jin Sand Source Control Program, Natural Forest Conservation 

Program and Grain to Green Program (Zhang et al., 2016). Ac- 

cumulated afforested area was 70.40 × 106 hm2 for the period 

2009 to 2018, accounting for about a third of current forest 

area. It could be found that China had comparable and stable 

harvested area in recent 10 years. The multi-year average har- 

vested area was 163.31 × 106 hm2 after 2009, increasing by only 

5.8% compared with that before 2009. While the statistical data 

revealed a 31.2% increase in total food production in a single 

decade due to in equal measure from and irrigation and heavy 

fertilizer use. Effective irrigation area and amount of fertilizer 

use had increased by 16.2 and 24.7% in recent 10 years. The  

spatial forest coverage rate and total food production were il- 

lustrated in Figure 15. It could be found that NCP, LP and YGP 

experienced massive forestation in recent years. While the total 

food production in NASR and HHHP increased significantly, 

which led to the cropland greening. These is reflected in the spa- 

tial distribution of EVI trends showed in Figure 7. 
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4.5. Influence of Climate Change and Human Activities on 

Vegetation Dynamics 

4.5.1. Spatial Distribution of EVIc and EVIh Trends 

The regions where EVI show significant trends (RST) 

were selected for analysis of drivers. The trends (slope) of EVIc 

and EVIh during 2000 to 2019 differed spatially throughout the 

RST (Figure 16). EVIc increased in most of the RST (account- 

ing for 89.8%). The area with a moderate increase trend (0.0025 

per year ≤ Slope < 0.005 per year) of EVIc covered 8.3% of the  

RST and was concentrated in NCP and eastern TP (e.g., Qing- 

hai Province). Whereas only 0.1% of the RST experienced large 

increase trend of EVIc (Slope ≥ 0.005 per year) (Figure 16(a)). 

However, EVIh showed more intensive variation than EVIc 

throughout the RST. Nearly 50% of the RST exhibited moder- 

ate or large increasing tendency of EVIh (Slope ≥ 0.0025 per 

year). The area with a large increase trend was concentrated in 

LP. While the areas that exhibited decreases in EVIh showed a 

discrete geographical distribution in HHHP and MLYR (Figure 

16(b)). 

 

 
 

Figure 14. Change of construction land from 2000 to 2015: (a) HHHP; (b) MLYR; (c) SC; and the Change of EVI from 2000 to 

2019:(d) HHHP; (e) MLYR; (f) SC. 

 

Table 5. Changes in Forest Obtained from National Bureau of Statistics of China 

Time period Forest area (106 hm2) Accumulated afforested area (106 hm2) Forest coverage (%) 

2004 ~ 2008 179.02 53.65 18.64 

2009 ~ 2018 214.07 70.40 22.30 

Change (2004 ~ 2018) 35.05 (19.6%) 3.14 (31.2%) 3.66 (19.6%) 

 

Table 6. Changes in Croplands Obtained from National Bureau of Statistics of China 

Time period Harvested area (106 hm2) 
Total food production 

(106 t) 

Effective irrigation area 

(106 hm2) 

Amount of fertilizer use 

(106 t) 

2000 ~ 2008 154.31 476.95 55.19 46.48 

2009 ~ 2018 163.31 620.99 64.14 57.94 

Change (2000 ~ 2018) 9.00 (5.8%) 144.04 (30.2%) 8.96 (16.2%) 11.46 (24.7%) 
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Figure 15. The forest coverage rate and total food production of different years. (a) forest coverage rate of 2004; (b) forest 

coverage rate of 2018; (c) total food production of 2000; (d) total food production of 2018. 

 

 
 

Figure 16. Trends of EVIc (a) and EVIh (b) in the regions where EVI show significant trends (p < 0.05) in mainland China  

during 2000 to 2019. 
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4.5.2. Relative Importance of Climate Change and Human 

Activities on EVI Variations 

The EVI over mainland China was impacted by both cli- 

mate change and human activities. The relative roles of climate 

change and human activities at the pixel level were showed in 

Figure 17. Combined impacts of climate change and human ac- 

tivities enhanced the EVI in 87.7% of the RST, whereas they 

reduced the EVI in only 3.8% of the area from 2000 to 2019. 

The decrease in EVI caused by the combined impacts of cli- 

mate change and human activities were mainly distributed in 

Beijing-Tianjin-Hebei Urban Agglomeration and Yangtze Riv- 

er Delta. The change of EVI only driven by climate change or 

human activities was rarely found. Climate change was respon- 

sible for EVI increase in 1.6% of the RST and EVI decrease in 

0.5% of the area. The increase in EVI dominated by climate 

change were mainly distributed in QTP and SBSR. Addition- 

ally, the human activities contributed to an increase in the EVI 

in 5.3% of the RST, which was greater than the percentage of 

the area (1.2%) showing a decrease. Considering the change in 

EVI, the contribution of climate change was about 0 to 40% in 

most areas of RST (accounted for 74.3%). Climate change was 

a dominant driver of EVI change (Conc ≥ 60%) over only 9.9% 

of the areas of RST, mainly in Qinghai Province in QTP and 

Hexi Corridor in NASR. The human activities explained more 

than 60% of the observed significant trend in more than half 

areas of RST. They contributed the most (Conh ≥ 80%) to the 

observed EVI trend over 28.0% of the RST, mainly in LP, 

NCP, southeastern YGP and northern SC (Figure 18). 

5. Discussion 

5.1. Comparison the Results with NDVI 

Besides EVI, Normalized Difference Vegetation Index 

(NDVI) is also widely used for vegetation variations analysis. 

With the yearly NDVI data obtained from Resource and En- 

vironment Data Cloud Platform (RESDC) (http://www.resdc. 

cn/) and the same methods mentioned in Section 3, the spatial- 

temporal variation of NDVI can been analyzed. Proportions of 

vegetated lands showing greening/browning identified by EVI 

and NDVI were similar (Table 7). Temporal variations of vege- 

tation from the two indexes agree (bule and red color in Figure 

19) over 75.8% of the vegetated area and the disagreement (yel- 

low and green color in Figure 19) is mostly in western and 

northern China where the vegetation is sparse. For example, In 

QTP and NASR, the temporal variations of vegetation from the 

two indexes disagree over 39.8 and 30.8% of the vegetated area 

respectively. The two greening clusters, namely NCR and LP, 

identified by NDVI were approximately matching in EVI data. 

And both NDVI trend and EVI trend showed that the browning 

vegetated area located in Beijing-Tianjin-Hebei Urban Agglo- 

meration and Yangtze River Delta. 

The spatiotemporal variation characteristics of NDVI in 

Yangtze River (YZRB) and Yellow River Basin (YRB), two 

extremely important basins in China, were studied by Zhang et 

al. (2020). The results suggest that the greening vegetated areas 

were mainly distributed in the central and eastern YRB and the 

central Yangtze River, while the east YZRB is browning. These   

 

 
 

Figure 17. Spatial distribution of different driving forces of changes in EVI in the regions where EVI showed significant trends  

(p < 0.05) in mainland China during 2000 to 2019. 
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Figure 18. Contributions of climate change (a) and human activities (b) to EVI trend in the regions where EVI showed significant 

trends (p < 0.05) in China during 2000 to 2019. 

 

Table 7. Changes in Vegetation Based on EVI and NDVI 

Index and time period Proportion of vegetated lands showing greening (%) Proportion of vegetated lands showing browning (%) 

NDVI (2000 to 2018) 80.1 19.9 

EVI (2000 to 2019) 82.2 17.8 

 

 
 

Figure 19. Comparison EVI trend and NVDI trend. 
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results are similar with our findings illustrated in Figure 7. 

Zhang et al. (2020) found that the climate change had greater 

influences on vegetation than that of human activities in the 

central area of the YZRB and YRB. In this study, we also de- 

tected that climate change was a dominant driver of EVI change 

in the middle reaches of Yellow River. However, the areas 

affected by climate change in YZRB mainly located in the 

upper reaches of Yangtze River, especially in Jinsha River 

Basin. It might be due to the different methods used for attri- 

bution analysis. 

 

5.2. Impact of Climatic Factors on EVI 

The precipitation and temperature were identified as lead- 

ing climatic drivers determined the spatial-temporal of vegeta- 

tion. Although their effects vary across climate zones, ecosys- 

tem types, biomes and plant species (Churkina and Running, 

1998; Liu et al., 2015; Zhao et al., 2018). As shown in Figure 

10, most of the mainland China (77.8%) experienced a warm- 

ing and wetting trend during period 2000 to 2019. The areas 

with a warming and dryer climate accounted for 18.3% of the 

mainland China, mainly in HHHP (e.g., southern Haihe Plain), 

YGP (e.g., Hengduan Mountain region) and QTP (e.g., the south 

of Tanggula Mountain). 

The dominant climate factors affecting EVI in different 

sub-regions was identified by correlation analysis (Table 2). 

The temperature was the most important climate factor con- 

tributing to vegetation growth in MLYR, SBSR and SC. These 

areas are rich in precipitation. In general, the water available 

for vegetation growth would not be limited by precipitation (Qu 

et al., 2020). It has been proven that the temperature plays an 

important role in controlling the green-up date in these regions. 

The study carried by Cong et al. (2012) showed that green-up 

date for broadleaf forest would advance by about one day with 

1 °C of early growing season temperature increase. Maybe it is 

caused by the temperature increase in the beginning of the 

growing season, which may help to stimulate photosynthetic 

enzyme activities from the cold environment and ignite vege- 

tation growth through its impacts on nutrient availability and 

uptake (Jarvis et al., 2000; Cristiano et al., 2014). An advancing 

trend in the beginning of vegetation growing season might lead 

to a prolonged length of vegetation growing season. Accord- 

ingly, the vegetation growth would be promoted. In contrast, 

precipitation made greater positive contribution for vegetation 

growth than temperature in NCP and especially, NASR. The 

average annual precipitation in NASR is 237.1 mm, the lowest 

level among the nine sub-basins and the vegetation growth is 

mostly restricted by precipitation. This finding is consistent 

with previous studies, which indicated that precipitation was 

the major limited factor for vegetation growth in this region 

(Hao et al., 2014; Yan et al., 2019). The response of EVI to cli- 

mate factors in QTP was different from that in other regions. 

There were significant positive correlations of precipitation and 

temperature with EVI. Most of QTP are alpine and cold re- 

gions, with less precipitation and low temperature. It has been 

reported that the harsh climatic conditions are not favorite for 

vegetation growth, and thus both heat and water resources play 

crucial roles in maintaining and promoting vegetation status 

(Pan et al., 2017; Pang et al., 2017; Wang et al., 2017; Zheng 

et al., 2020). Because of wetter and warmer climatic conditions 

in recent decades in the whole QTP, the overall average EVI 

has increased. However, the vegetation degradation can still be 

found in local some areas, mainly because of the decrease of 

precipitation. Comparing with the temperature, the change of 

precipitation is more complicated. In the north of Tanggula 

Mountain (i.e., Qinghai), the effective precipitation increased 

in recent 20 years. However, a decrease trend was observed in 

the south of Tanggula Mountain (i.e., Tibet). The climate in most 

areas in Qinghai became warmer and wetter which contributes 

to the greening of alpine vegetation. But warmer and drier cli- 

mate in most Tibet was the main factor for local vegetation deg- 

radation and this result accorded with the previous result pres- 

ented by Li et al. (2016). 

 

5.3. Impact of Human Activities on EVI 

Human activities, especially afforestation projects, have 

been confirmed as the key factor to promotion of vegetation 

restoration (Qu et al., 2018; Chen et al., 2019). In order to com- 

bating desertification and land degradation, a series of pro- 

grams for forests conservation and expansion have been carried 

out, which lead in greening of China. For example, the vegeta- 

tion in LP has been greatly promoted owing to the Grain to 

Green Program (GGP), with over 21% of LP converting from 

low-value NDVI to high-value NDVI after the implementation 

of GGP (Li et al., 2017). The grassland productivity increased 

due to implementation of the GGP, especially in Shaanxi 

Province (5.89 gC·m−2·yr−1) (Yan et al., 2019). Based on ours 

analyses on accumulated afforested area change in mainland 

China, EVI was significantly correlated with the cumulative af- 

forestation area, with R = 0.852 (p < 0.01), and areas where for- 

est coverage rate increasing were consistent with the signif- 

icant increase of EVI.  

The study of Li et al. (2018) indicated that the vegetation 

degradation mainly be found in the more economically devel- 

oped southern China and North China Plain, because of the 

transformation from cropland to urban land. The climate is be- 

coming wetter and warmer in urban areas of these regions, 

which would promote vegetation growth. However, these pos- 

itive effect on vegetation growth cannot offset the negative ef- 

fect caused by rapid urbanization (Jiang et al., 2015). Beijing-

Tianjin-Hebei Urban Agglomeration, Yangtze River Delta and 

Pearl River Delta are the important economic growth poles in 

China. Thus, a higher urbanization in the future is predictable. 

It might pose more pressure on ecosystem, such as vegetation 

degradation, if the local government does not implement any 

sustainable development. How to reconcile economic devel- 

opment with ecological protection is a considerable challenge. 

Establishment of more green spaces to increase vegetation cov- 

er in urbanized areas is an effective way to offset negative ef- 

fects led by urbanization. 

Inner Mongolia, located in NASR has witnessed the prob- 

lem of grassland degeneration in recent decades. Grassland de- 

generation mainly located in Xilingol and Hulun Buir. Previous 

studies indicated that the grassland degeneration in Inner Mon- 

golia caused by many factors, such as overgrazing, cultivated 
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land expansion (Zhou et al., 2014; Zhou et al., 2017). Accord- 

ing to the Inner Mongolia Statistical Yearbook, the total num- 

ber of livestock and the area of cultivated land increased by 

48.2 and 26.7% respectively from 2000 to 2018. This increase 

can accelerate grassland degradation and resulting in further 

serious environmental problems (i.e., desertification, soil ero- 

sion, biodiversity decline). There is no doubt that the natural 

grassland plays an important role not only in animal production 

but also in carbon sequestration in Inner Mongolia or the whole 

NASR. It is necessary to find sustainable grassland manage- 

ment to support the increasing requirement for feed in the con- 

text of environment protection. 

 

5.4. Limitations of the Study 

Excepting the driving factors of vegetation dynamics con- 

sidered in this study, atmospheric CO2 concentration also has 

effect on greening, especially in the Northern Hemisphere (Zhu 

et al., 2016). Stomatal conductance and plant water use would 

be modified by higher CO2 concentration, leading to a lower 

drought stress on vegetation growth, known as CO2 fertiliza- 

tion (Swann et al., 2016). Besides, the complex interaction of 

climate change and human activities would affect vegetation 

variations. However, climate change and human activities were 

regarded as two independent driving forces, which might influ- 

ence the accuracy of vegetation change attribution. Residual 

trend analysis method was used to quantify the impacts of cli- 

mate change and human activities on vegetation variation, 

which was based on Multivariate Linear Regression. It exits 

some uncertainties associated with reconstruction of EVIc se- 

ries. Establishing a comprehensive model to separate the effects 

of climate change and human activities is needed in the future. 

6. Conclusions 

This study analyzed the vegetation changes and investigat- 

ed the causal factors in the mainland China. The primary con- 

clusions are as follows: 

In general, the EVI is lower in the northwest and increases 

toward the southeast in mainland China. The EVI was normally 

lower than 0.30 in the Northwest China and higher than 0.50 in 

most southern China. A significantly increasing rate of EVI as 

the longitude increased can be observed, defining a green rate 

of 0.009 per degree in longitude. 

The annual EVI for the entire mainland China showed a 

significant increase trend during 2000 to 2019, with a rate of 

0.0023 per year. A break point in 2009 was detected and the 

increasing rate became weaker after 2009. The areas where the 

EVI having significant increase and decrease trends account for 

42.1 and 2.7% of the vegetated land, respectively. 

The wetter and warmer climatic condition in recent 20 

years is conducive to vegetation growth in mainland China. 

The vegetation in northern China is more sensitive to precipi- 

tation while the temperature makes greater positive contribu- 

tion to vegetation growth in southern China. However, in the 

Alpine region, both precipitation and temperature affected veg- 

etation growth significantly. Anthropogenic factors, such as in- 

crease of forest planting and food production also played an im- 

portant role in greening vegetation, especially in Loess Plateau, 

Northeast China Plain and Huang-Huai-Hai Plain. The brown- 

ing in some vegetated land might relate to urbanization, such 

as Beijing-Tianjin-Hebei Urban Agglomeration, Yangtze River 

Delta and Pearl River Delta. Generally, human activities were 

the main driving factors of vegetation greening in mainland 

China in two decades. Implementation of ecological restoration 

programs, construction of irrigated areas and heavy fertilizer 

use promote the vegetation growth in forestland and cultivated 

land. 
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