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ABSTRACT. In this study, both groundwater flow and nitrate transport were simulated in the Upper White River Watershed (Indiana, 

US) dominated by agricultural production. MODFLOW and MT3DMS were used for groundwater flow and contaminant transport mod- 

elling of the watershed under transient conditions. The input files for MODFLOW and MT3DMS were obtained by the GMS groundwater 

simulator. Model simulations were performed for 25 years between 1995 ~ 2019 with one-year intervals. Groundwater observation data 

(hydraulic heads and nitrate concentrations) for 1995 ~ 2013 and 2014 ~ 2019 were used for the model calibration and validation, respect- 

tively. A heuristic optimization model based on the modified Clonal Selection Algorithm (a class of Artificial Immune Systems) was 

improved for calibration of the groundwater contaminant transport model. MODFLOW and MT3DMS were linked with the algorithm 

and run in MATLAB. Based on land use/cover, recharge and recharge nitrate concentrations were calibrated while other groundwater 

parameters (storage, porosity, longitudinal dispersivity, and denitrification rate coefficients) were calibrated for 7 aquifers. Furthermore, 

the models were run for different scenarios representing possible future conditions. The results demonstrated that the models performed 

well in terms of the fate and transport of nitrate in the Upper White River Watershed. 

 

Keywords: nitrate contamination, groundwater contaminant transport, groundwater flow, modeling, agricultural watershed, heuristic opti- 

mization

 

 
 

1. Introduction 

Water is vital for human and other living creatures. Water 

resources for drinking are quite limited in the world. Therefore, 

freshwater resources based on groundwater and surface water 

should be protected and managed properly. Recently, rapid hu- 

man population growth and developing technology have caused 

decreasing water resources and increasing water pollution. Es- 

pecially, misapplications of irrigation (unauthorized excessive 

consumption of groundwater), excessive usage of fertilizer and 

pesticides (including manure) are harmful to groundwater. The 

excessive use of fertilizer results in nitrate (NO3) pollution of 

groundwater. Thus, public health can be affected by high NO3 

concentration in drinking water. This can cause serious health 

problems such as a blue baby syndrome for new-born babies as 

well as a gastric cancer for adults (Kapoor and Viraraghavan, 

1997; Almasri, 2007; Ozturk and Goncu, 2017). Also, NO3 is 

one of the ions causing water hardness. The World Health Or- 

ganization (WHO) defines NO3 pollution as over 50 mg/L con- 

centration in groundwater for drinking (WHO, 1995). 

In this context, there are several studies related to ground- 

water vulnerability-risk modelling and mapping (DRA-STIC- 
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GIS, GOD, etc.) for NO3 pollution. Engel et al. (1996) used 

DRASTIC, SEEPAGE, SPISP models and GIS for mapping 

groundwater vulnerability of NO3 and pesticide pollution based 

on agricultural areas in Midwest America. Similarly, McLay et 

al. (2001), Sener et al. (2009), Firat Ersoy and Gultekin (2013), 

Chandoul et al. (2014), Eke et al. (2015), Arauzo (2017), Jang 

et al. (2017), Ramaraju and Veni (2017), and Zhai et al. (2017) 

applied DRASTIC-GIS, LU-IV, and HHRA (USEPA) models 

for mapping groundwater vulnerability-risk assessment of NO3 

and pesticide pollution caused by agricultural activities in wa- 

tersheds. Groundwater vulnerability models show only present 

areas under risk against pollutants in watersheds. They are lim- 

ited and cannot perform spatiotemporal estimation of contami- 

nants in the groundwater. Instead, groundwater flow and con- 

taminant transport models are used such as MODFLOW (Mc- 

Donald and Harbaugh, 1988) and MT3DMS (Zheng and Wang, 

1999). Birkinshaw and Ewen (2000), Molenat and Gascuel 

(2002), David (2003), Almasri and Kaluarachchi (2007), Orban 

(2008), Jiang and Somers (2009), Baalousha (2013), Wang et 

al. (2013), Psarropoulou and Karatzas (2014), and Noori et al. 

(2018) used SHETRAN, MODFLOW-MT3D, LEACHM, M- 

ODFLOW-MT3D, HFEMC-SUFT3D, numerical models (N-

FM, NTB and GIS groundwater), MODFLOW-MT3DMS, and 

ROM-MT3DMS for modeling the groundwater flow and NO3 

transport in the agricultural watersheds, respectively. Similar- 

ly, Zhang et al. (2019) used MODFLOW and MT3DMS model 

for the prediction of agriculture-related NO3 contamination in 
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groundwater. Zhang et al. (2020) used HYDRUS-1D, MOD- 

FLOW and MT3DMS for modeling fertileization impacts on 

NO3 leaching and groundwater contamination. Noori et al. 

(2020) developed the POD model linked to MT3DMS (POD- 

MT3DMS-Tool) for predicting NO3 in aquifers. Ameur et al. 

(2021) used Susceptibility Index and MT3DMS to simulate 

pollution transport of NO3 in the aquifer. Samadi-Darafshani et 

al. (2021) modeled aquifer flow and NO3 contaminant transport 

and concentration in the aquifer by using MODFLOW and 

MT3D. A model calibration process was performed manually 

in most of these studies. Manual calibration causes a time loss 

and may not be reliable exactly (because there are numerous 

trial and error adjustments depending on number of parameters 

and it is almost impossible to test all trials and errors manually). 

Therefore, as an alternative to the related literature, this study 

aims at spatiotemporal modeling groundwater flow and NO3 

pollution in an agriculture-dominated watershed by using a 

heuristic optimization model based on artificial immune sys- 

tems for groundwater model calibration (instead of manual cal- 

ibration). The optimization model was developed to calibrate 

groundwater flow and groundwater contaminant transport mod- 

el parameters such as riverbed conductivity, porosity, longi-

tudinal dispersivity, denitrification rate, recharge concentration 

for a real groundwater system (case study). There is no another 

optimization model developed (linked with MODFLOW and 

MT3DMS) for calibrating these parameters simultaneously un- 

der transient conditions in the related literature. Recharge and 

recharge NO3 concentrations were calibrated by considering 

land use/cover while storage, porosity, longitudinal dispersity 

and denitrification rate coefficients were calibrated for 7 aqui- 

fers in the watershed. 

2. Materials and Methods 

2.1. Study Area 

The study area is the Upper White River Watershed (UW- 

RW) in Indiana, US (Figure 1). Drainage area of the watershed 

is 7,044 km2. Land use/cover of UWRW consists of 50.6% agri- 

cultural areas, 26.4% urban areas, 13.8% forest, 7.2% pasture, 

and 2% others (wetlands, barren lands, etc.) (Figure 2). The wa- 

tershed includes 4 large reservoirs as well as the White River. 

Lowest and highest elevations of UWRW are 162.9 and 371.7 

m, respectively (Figure 3). Mean annual precipitation is 1,093 

mm, and maximum, minimum and mean daily temperatures are 

36.1, –31.3, and 10.8 ºC (NCDC, 2010). In this study, ground- 

water divide (basin) was assumed to overlap/coincide with the 

surface watershed boundary. UWRW includes 11 aquifer types 

(Figure 4) (IDNR, 2011). However, 7 aquifer types were consi- 

dered because some of them have small areas and are negligi- 

ble. There are 775 registered pumping wells in UWRW. 

 

2.2. Model Formulation 

In this study, MODFLOW and MT3DMS were used for model- 

ling groundwater flow and NO3 transport in UWRW. The input 

files for MODFLOW and MT3DMS were obtained by the 

GMS groundwater simulator. Different parameters need to be 

calibrated for groundwater modelling such as recharge, storage 

coefficient, hydraulic conductivity, pumping rate, recharge and 

river concentration (Hill et al., 2000; Almasri and Kaluarach- 

chi, 2007; Edet et al., 2014; Wohlgemuth, 2016; Noori et al., 

2018). The modified clonal selection algorithm (Clonalg) was 

used as the heuristic optimization method for model calibration 

(Eryiğit, 2015). In order to simulate groundwater flow and NO3 

transport, MODFLOW and MT3DMS were used in conjunc- 

tion with the algorithm in MATLAB. 

 

 
 

Figure 1. The study area (Upper White River Watershed). 

 

 
 

Figure 2. Land use/cover (2016) of the study area (UWRW) 

(MRLC, 2019). 

 

2.2.1. Groundwater Flow Model 

The partial-differential equation of the three-dimensional 

groundwater flow used in MODFLOW is as follows (McDo- 

nald and Harbaugh, 1988): 
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 (1) 

 

where Kxx, Kyy and Kzz are hydraulic conductivity values along 

the x, y and z coordinate axes (L/T), h is the hydraulic head (L), 

W is the volumetric flux per unit volume representing sources 

and/or sinks of water, with W < 0 for flow out of the ground- 

water system, and W > 0 for flow into the system (T-1), S is the 

specific storage of the porous material (L-1), and t is time (T). 

The groundwater flow model was created in GMS consid- 

ering the main river (White River), 4 reservoirs and pumping 

wells (Figure 5). A two-dimensional one confined layer was as- 

sumed for the groundwater system of UWRW. A grid cell size 

of 500 × 500 m (Δx = Δy = 500 m) was used. The river package, 

CHD package and well package in GMS were used for the 

White River, the reservoirs and the pumping wells, respective- 

ly. USGS DEM raster data and surface water gage height data 

were used for water levels of the reservoirs, the river and bot- 

tom elevations of the riverbed. 

 

 
 

Figure 3. Elevations (DEM) of the study area (UWRW). 

 

 
 

Figure 4. Aquifer types of UWRW. 
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Figure 5. One-confined-layer groundwater model of UWRW 

in GMS (Yellow points are pumping wells). 

 

 
 

Figure 6. Locations of groundwater level observation wells in 

UWRW (1995 ~ 2019). 

 

The aquifer transmissivity data were obtained from IDNR 

(2011). These data were interpolated by using Inverse Distance 

Weighting (IDW) to the entire watershed. According to land 

use/cover (Figure 2), four groundwater recharge regions (agri- 

culture, urban, forest, and pasture) were considered for the re- 

charge package. Evapotranspiration raster data were supplied 

from USGS (2019) for the evapotranspiration package. The 

time interval was selected as yearly (Δt = year) due to data gaps. 

Groundwater hydraulic head data (observed water levels, h) 

between 1995 ~ 2019 were collected from USGS. These data 

were used for model calibration (1995 ~ 2013) and validation 

(2014 ~ 2019). Observed heads in 1995 were interpolated by 

using IDW for starting heads of the groundwater basin. Loca- 

tions of groundwater level observation wells in UWRW are giv- 

en in Figure 6. 

The optimization model for groundwater flow of the UW- 

RW was coded and linked with MODFLOW 2005 in MAT- 

LAB 2018b. The flowchart of the optimization model is given 

in Figure 7 (Eryiğit, 2021). In brief, input files of the ground- 

water flow are generated for MODFLOW in GMS. MOD- 

FLOW is run in MATLAB by using random groundwater flow 

parameters created by modified Clonalg. The predicted and ob- 

served hydraulic heads are read and used for calculating the ob- 

jective function. All groundwater flow parameters are cloned 

and mutated (matured) through the algorithm. After mutation 

process, MODFLOW is run again by using mutated parame- 

ters. Predicted and observed hydraulic heads are read and used 

again for calculating the objective function. The parameter se- 

ries which have minimum objective function values (best indi- 

viduals) are selected to enter the population. This loop proceeds 

until iteration reaches maximum number or difference between 

max and min objective function values in the population is less 

than an assigned error. Hence, the optimum model calibration 

can be obtained. 

The objective function was minimized during model cali- 

bration by using the model predicted and the field observed val- 

ues of h under transient conditions. The objective function of 

the model is as follows: 

 

, , , ,

1 1

minimize 
h tN N

pred i t obs i t

i t

h h
 

 
 

 
   (2) 

 

where hpred,i,t is the i-th predicted hydraulic head at t-th time, 

hobs,i,t is the i-th observed hydraulic head at t-th time, Nh is the 

number of observed heads and Nt is the number of times (days, 

years, etc.). Storage coefficients of 7 aquifers and recharge co- 

efficients of 4 groundwater recharge regions in the watershed, 

and riverbed conductivity were unknown parameters. These pa- 

rameters were calibrated simultaneously by the optimization 

model. 

 

2.2.2. Groundwater Contaminant Transport Model 

The partial differential equation of the fate and transport 

of contaminants for the three-dimensional transient groundwa- 

ter flow systems used in MT3DMS is as follows (Zheng and 

Wang, 1999): 

 

 ij i

i j i

C C
R D v C

t x x x
  

    
  

     

 

1 2s s s bq C q C C C       (3) 

 

where C is dissolved concentration of the contaminant (M/L3), 

t is time (T), θ is porosity of the subsurface medium (unitless), 

R is the retardation factor (unitless), xi, j is a distance along the 

respective Cartesian coordinate axis (L), Di, j is a hydrodynamic 

dispersion coefficient tensor (L2/T), vi is a seepage or linear pore 

water velocity (L/T), qs is a volumetric flow rate per unit vol- 

ume of aquifer representing fluid sources (positive) and sinks 

(negative) (T-1), Cs is the concentration of the source or sink 

flux for the contaminant (M/L3), 
sq is the rate of change in 

transient groundwater storage (T-1), λ1 is a first-order reaction 

rate for the dissolved phase (T-1), λ2 is a first-order reaction rate 
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Figure 7. Flowchart of the optimization model for groundwater flow using modified Clonalg. 
 

for the sorbed (solid) phase (T-1), ρb is a bulk density of the sub- 

surface medium (M/L), C is a concentration of the contaminant 

sorbed on the subsurface solids (M/M). 

The hydraulic heads obtained from the groundwater flow 

model (MODFLOW) were used for the groundwater contami- 

nant transport model (MT3DMS). The advection package, dis- 

persion package, source/sink mixing package (river, reservoirs 

and recharge NO3 concentrations) and chemical reaction pack- 

age in GMS were used for spatiotemporal NO3 contaminant 

(pollution) modelling. First-order irreversible kinetic reaction 

was selected, and sorption was assumed as none because NO3 

is a highly mobile species with little sorption in the ground- 

water (Meisinger and Randall, 1991; Birkinshaw and Ewen, 

2000; Shamrukh et al., 2001). The ratio of transverse dispersi-

vity to longitudinal dispersivity and molecular diffusion for 

NO3 were assigned as 0.1 and 5 × 10-5 m2/day, respectively (Fri- 

nd et al., 1990; Gelhar et al., 1992). Recharge NO3 concentra- 

tions were based on the 4 groundwater recharge regions accord- 

ing to land use/cover (agriculture, urban, forest, and pasture). 

 
 

Figure 8. Locations of groundwater NO3 concentration obser- 

vation wells in UWRW (1995 ~ 2019). 
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NO3 data of the groundwater, river and reservoirs between 

1995 ~ 2019 were obtained from Water Quality Portal (WQP, 

2019) and Heidelberg University. These data were used for mod- 

el calibration (1995 ~ 2013) and validation (2014 ~ 2019). Ob- 

served concentrations in 1995 and years before 1995 (because 

of a lack of data) were interpolated by using the IDW for start- 

ing concentrations of the groundwater basin. The locations of 

groundwater NO3 concentration observation wells in UWRW 

are shown in Figure 8. Similarly, the optimization model for 

groundwater contaminant transport of the UWRW was coded 

and linked with MT3DMS in MATLAB 2018b (Figure 9). 

In summary, input files of the groundwater transport are 

generated for MT3DMS in GMS. MT3DMS is run in MAT-

LAB by using random groundwater transport parameters cre- 

ated by modified Clonalg. Predicted and observed NO3 concen- 

trations are read and used for calculating the objective function. 

All groundwater transport parameter series are cloned and mu- 

tated (matured) through the algorithm. After mutation process, 

MT3DMS is run again by using mutated parameters. Predicted 

and observed NO3 concentrations are read and used again for 

calculating the objective function. The groundwater transport 

parameters series which have minimum objective function val- 

ues (best individuals) are selected to enter the population. The 

objective function was minimized during model calibration by 

using the model predicted and the field observed values of C 

under transient conditions. The objective function of the model 

is as follows: 

 

, , , ,

1 1

minimize 
c tN N

pred i t obs i t

i t

C C
 

 
 

 
   (4) 

 

where Cpred,i,t is the i-th predicted concentration at t-th time, 

Cobs,i,t is the i-th observed concentration at t-th time, Nc is the 

number of observed concentrations and Nt is the number of 

times (days, years, etc.). Porosity, longitudinal dispersivity, and 

denitrification rate coefficients of 7 aquifers, and recharge con- 

centrations of 4 groundwater recharge regions in the watershed 

were unknown parameters. These parameters were calibrated 

simultaneously by the optimization model. 

 

2.2.3. Scenarios 

After calibration and validation of the groundwater flow 

and contaminant transport models, three scenarios were mod- 

eled as follows: (1) Flow rates of pumping wells are doubled 

(double withdrawal). This scenario was carried out for estimat- 

ing variation of hydraulic heads in the entire watershed after 25 

years, while flow rates of pumping wells are doubled (repre- 

sents increasing groundwater use). (2) Recharge concentration 

of agricultural areas is multiplied 10 times. This scenario was 

carried out for estimating variation of NO3 concentrations in 

the entire watershed after 25 years, while recharge concentra- 

tion of agricultural areas is multiplied 10 times and also pasture 

areas are turned into agricultural fields (represents increasing 

agricultural activities). (3) Combination of scenarios 1 and 2. 

This scenario is that flow rates of pumping wells are doubled 

while recharge concentration of agricultural areas is multiplied 

10 times and pasture areas are turned into agricultural fields. 

3. Results and Discussion 

3.1. Results of UWRW Groundwater Flow Model 

Calibrated model parameters, calibration and validation 

results are given in Table 1 and Table 2, respectively. Riverbed 

thickness was assumed as 0.305 m in the calibration of Kriverbed 

(Yager, 1993). As can be seen in Table 1, Rpasture (recharge from 

pasture) was higher than recharge for other land uses (Ragriculture, 

Rurban, and Rforest). Herbaceous/woody wetlands were included 

in pasture areas while calibrating recharges of land use/cover. 

Hence, it is reasonable that Rpasture is high. 

Hydraulic heads at the beginning (1995) and end (2019) of 

the simulation are illustrated in Figures 10a and b. There was a 

remarkable drop of hydraulic head (mean drop is 6.2 m, vary- 

ing between 0 and 56.9 m) especially around the outlet of the 

watershed during the simulation (for 25 years). This drop oc- 

curred due to increasing pumping discharges (flow rates) and 

increasing numbers of pumping wells during 25 years and low 

Rforest. On the other hand, the groundwater head (hydraulic head) 

increased (mean rise is 18.9 m, varying between 1.5 × 10-5 and 

68.6 m) throughout the rest of the watershed in general after 25 

years. In this part of watershed, the groundwater is fed by the 

four big lakes in addition to a precipitation recharge (Figures 1 

and 5). Owing to these lakes, the groundwater level could have 

been maintained against withdrawals by the pumping wells. 

The results indicate that there is a huge conflict between pump- 

ing wells and recharges in the UWRW throughout 25 years. 

Also, the balance of recharge and evapotranspiration was an 

important factor for variation of hydraulic heads. 

MAE and RMSE of model calibration for the groundwater 

flow (difference between simulated and observed hydraulic 

heads) were less than 10% of the domain variation (±10 m) as 

suggested by Mandle (2002) (Table 2). Also, MAE for model 

validation was less than 10 m. Therefore, it can be said that the 

groundwater flow model was appropriately calibrated and vali- 

dated. According to USGS data, the groundwater system of the 

UWRW was entirely assumed as a two-dimensional one con- 

fined layer to simplify the model. However, there are some ex- 

ceptional unconfined layers in the study area. Thus, the MAE 

and RMSE results of the calibration and validation might have 

been affected negatively. Also, the results could be improved 

by applying a smaller grid cell size such as 100 × 100 m to the 

study area (in terms of model accuracy) (A grid cell size of 500 

× 500 m was used in the study). But, it makes the model diffi- 

cult and needs to more observation data. 

 

3.2. Results of UWRW Groundwater Contaminant 

Transport Model 

Calibrated model parameters, calibration and validation re- 

sults are given in Table 3 and Table 4, respectively. As can be 

seen in Table 3, agricultural areas had the highest recharge NO3 

concentration while the forest areas have the second highest re- 

charge concentration among the land covers. The NO3 concen- 

trations at the beginning (1995) and end (2019) of the simula-  
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Figure 9. Flowchart of the optimization model for groundwater contaminant transport using modified Clonalg. 

 

 
 

Figure 10. Simulated hydraulic heads in (a) 1995, and (b) 2019. 
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Table 1. Calibrated Groundwater Flow Parameters for the Optimization Model 

Storage coefficients of aquifers 

(unitless) 

Recharges of landuse/cover 

(m year-1) 

Riverbed conductivity 

(m year-1) 

S1 S2 S3 S4 S5 S6 S7 Ragriculture Rurban Rforest Rpasture Kriverbed 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.66 0.94 0.62 1.18 281.5 

Table 2. Calibration and Validation Results of Groundwater 

Flow Model 

Calibration  

(1995 ~ 2013) 

Validation  

(2014 ~ 2019) 

Ncalib Nvalid 

MAE RMSE MAE RMSE   

4.9 m 7.5 m 9.8 m 15.4 m 671 255 

 

Table 3. Calibrated Groundwater Transport Parameters for 

the Optimized Model 

Porosity 

(Unitless) 

Longitudinal 

Dispersivity 

(m) 

Denitrification 

Rate 

(year-1) 

Recharge conc. of 

landuse/cover 

(mg/L) 

P1 0.90 D1 0.104 DR1 0.006 RCagriculture 0.12 

P2 0.17 D2 0.392 DR2 0.083 RCurban 0.02 

P3 0.53 D3 0.415 DR3 0.362 RCforest 0.11 

P4 0.82 D4 0.272 DR4 0.011 RCpasture 0.01 

P5 0.10 D5 0.354 DR5 0.420   

P6 0.89 D6 0.096 DR6 0.009   

P7 0.57 D7 0.189 DR7 0.047   

 

Table 4. Calibration and Validation Results of Groundwater 

Transport Model 

Calibration (mg/L) 

(1995 ~ 2013) 

Validation (mg/L) 

(2014 ~ 2019) 

Ncalib Nvalid 

MAE RMSE MAE RMSE   

1.69 2.06 4.24 4.81 1235 390 

 

tion are illustrated in Figure 11. While comparing Figures 2 and 

11, the high predicted NO3 concentrations in the groundwater 

around areas consisting of both forest and agriculture (around 

the outlet of the watershed) and calibrated recharge concentra- 

tions of these areas (higher than urban and pasture) overlap. 

These results were because fertilizers/manures were the main 

sources of NO3 contamination in the agricultural watershed. 

MAE and RMSE of model calibration for the groundwater 

contaminant transport (difference between simulated and ob- 

served NO3 concentrations) were less than a threshold value of 

10% of NO3 variation (10 mg/L) as suggested by Noori et al. 

(2018) (Table 4). Also, MAE and RMSE of model validation 

were less than 10 mg/L. Therefore, it can be inferred that the 

groundwater contaminant transport model was properly cali- 

brated and validated. Moreover, the results are in accord with 

the integrated aquifer vulnerability map of the UWRW created 

by Jang et al. (2017). 

The groundwater modeling of the UWRW was performed 

under a constant land use/cover (Figure 2). However, the land 

use/cover in the watershed changed slightly during 25 years. 

This influenced both recharge and recharge NO3 concentration, 

so that the MAE and RMSE results of the calibration and va- 

lidation could have been affected negatively. Considering a 

change of the land use/cover, the groundwater of the watershed 

can be represented and simulated much better by the model. 

 

3.3. Results of Scenarios 

Simulated hydraulic heads and NO3 concentrations in sce- 

narios 1, 2, and 3 are illustrated in Figures 12, 13, and 14. Ac- 

cording to scenario 1, mean drop of hydraulic head in the entire 

watershed after 25 years is 1.3 m (head drops vary between 0 

and 78.7 m) in comparison with simulation head results of 2019. 

According to scenario 2, the mean increase of NO3 concentra- 

tion in the entire watershed after 25 years is 0.15 mg/L (in- 

creases of concentration vary between 0 and 7.9 mg/L) in com- 

parison with simulation NO3 results of 2019. According to sce- 

nario 3, the mean increase of NO3 concentration in the entire 

watershed after 25 years is 0.11 mg/L (increases of concentra-

tion vary between 0 and 5.6 mg/L) in comparison with simula- 

tion NO3 results of 2019. 

 

 
 

Figure 11. Simulated NO3 concentrations in (a) 1995, and (b) 2019. 
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Figure 12. Simulated hydraulic heads in Scenario 1. 

 

 
 

Figure 13. Simulated NO3 concentrations in Scenario 2. 

 

 
 

Figure 14. Simulated NO3 concentrations in Scenario 3. 

 

Although low mean head drop (1.3 m) and low mean in- 

crease of NO3 concentration (0.15 and 0.11 mg/L) throughout 

the entire watershed, significant hydraulic head drops and in- 

creases of NO3 concentration were seen of up to 78.7 m and 7.9 

mg/L, respectively. It indicates that some parts of the study area 

may be vulnerable based on increasing irrigation and agricul- 

tural land use. Therefore, the obtained results may be consider- 

able for agricultural policies in the watershed.  

4. Conclusions 

In this study, spatiotemporal groundwater flow and NO3 

transport models of the UWRW, which is an agriculture domi- 

nated watershed, were performed for 25 years. During the mod- 

el calibration, numerous trial and error adjustments should be 

carried out to find the best model parameters and corresponding 

results. In order to facilitate this task, the optimization model 

with modified Clonalg (Eryiğit, 2021) was used instead of man- 

ual calibration (it was improved for the groundwater contami- 

nant transport model in this study). There were many parame- 

ters required for the calibration such as recharge, recharge con- 

centration, storage, porosity, longitudinal dispersivity, denitri- 

fication rate and riverbed conductivity in the study. The modi- 

fied Clonalg was used for the first time to calibrate these para- 

meters in a real groundwater system. In the related literature, 

these parameters were calibrated manually. Within this study, 

the improved optimization model makes the model calibration 

easier and more reliable (because all trials and errors can be 

performed/tested by the algorithm for obtaining an optimum 

calibration). The results showed that calibration and validation 

of the groundwater flow and transport models were acceptable 

according to the related literature (Mandle, 2002; Noori et al., 

2018). Thus, it can be said that the optimization model is appli- 

cable and can be used for groundwater model calibration in fu- 

ture studies. 

An aquifer vulnerability map of the UWRW for NO3 was 

performed by using DRASTIC in the related literature (Jang et 

al., 2017), but it cannot simulate spatiotemporal variations of 

the flow and concentration in the groundwater. With this study, 

transient groundwater flow and contaminant transport models 

for the UWRW according to the different scenarios were ap- 

plied. Thanks to this, the situations were able to be predicted 

under excessive groundwater use and agricultural activities. Ac- 

cording to the three scenarios, considerable drops of hydraulic 

head and increases of NO3 concentration in the groundwater 

would occur. Also, how the model responds to differrent inde- 

pendent variables (recharge concentration and pump flow rate) 

was seen. However, some uncertainty analysis (Monte Carlo, 

etc.) could be implemented for future studies. The study may 

provide guidance in terms of groundwater consumption and 

NO3 pollution of the UWRW for future scenarios and future 

agricultural policies in the watershed. 
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