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ABSTRACT. In the present study, a new approach by coupling the interpolation method with computation-based technique (data-mining 

algorithms and an optimization algorithm) is introduced for modeling and optimization removal of Reactive Orange 7 (RO7) dye removal 

from synthetic wastewater. To this end, four significant factors like pH, electrolyte concentration, current density, and electrolysis time 

are considered as input variables. Thus, modeling of RO7 removal is implemented using eight data mining algorithms including multi- 

variate linear regression (MLR), ridge regression (RR), multivariate nonlinear regression (MNLR), artificial neural network (ANN), 

classification and regression tree (CART), k nearest neighbor (KNN), random forest (RF), and support vector machine (SVM). These al- 

gorithms require a large data set for creating reliable results. However, creating a large number of experimental data request consuming 

high cost and time. Hence, the interpolation methods of kriging (KRG) and inverse distance weight (IDW) are applied for generating 

more data, whereas KRG has more accuracy than IDW by increasing the 47.080, 36.914, and 1.77% in MAE, RMSE, and R values, res- 

pectively. Then, the data mining algorithms are used for modeling the decolorization efficiency (DE) based on the original data and new 

data from KRG. It is found that using new data leads to significantly increasing accuracy (94.47, 96.43, 1.52, and 2.77% for MAE, RMSE, 

R and R2, respectively) of DE modeling. Also, SVM has demonstrated the highest accuracy out of all data mining algorithms (by in- 

creasing the 97.13, 98.30, and 14.42% in MAE, RMSE, and R2 values, respectively). Another challenge in the removal of RO7 from 

synthetic wastewater is predicting the maximum removal amount and optimal input variables. For this purpose, the hybrid of SVM and 

whale optimization algorithm (WOA) is employed. Finally, SVM-WOA has predicted the maximum of DE (91%) by optimal values of 

4.2, 1.5 g/L, 4.2 mA/cm2, and 18 min for pH, C, I, and Time, respectively. In light of the high performance of the introduced approach 

for modeling removal process and predicting optimal conditions of removal process, this approach can be suggested for the removal of 

other pollutants from wastewater when the number of experimental data set is limited.  
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1. Introduction 

Water pollution by diverse organic compounds from vari- 

ous industries is an important and alarming issue worldwide. 

The development of the synthetic dye industry over the past years 

has led to increased production of colored wastewater contain- 

ing toxic, refractory, and non-biodegradable organic pollutants. 

Furthermore, dyes’ presence in effluents prevents the passage 

of light into the water body; Thus, it has an adverse effect on 

the equilibrium of the quality status of the ecological environ- 

ment and human health (Moreira et al., 2017; Nidheesh et al., 

2018). Therefore, the treatment of these colored wastewaters be- 

fore discharge to the environment is essential. 

There are several ways to treat colored wastewaters, where- 

as a promising next-generation technology for the conventional 
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wastewater treatment methods can be the electrochemical ad- 

vanced oxidation processes (EAOPs). According to generated 

various oxidizing species during the EAOPs along with its ad- 

vantages such as cost-effectiveness, versatility, simplicity, amenabil- 

ity of automation, and environmental compatibility as well as 

high removal efficiency without producing any secondary pol- 

lutants, this method has become an appropriate alternative for 

efficient degradation of a wide range of organic pollutants. (Chia- 

neh and Parsa, 2016; Santos et al., 2016; Siedlecka et al., 2018). 

Besides, various parameters such as the type and concentration 

of the supporting electrolyte along with the anode material signi- 

ficantly determine the types of reaction involved in the removal 

process (Yang et al., 2012; Chianeh and Parsa, 2014). 

Considering the complications associated with the relation- 

ship of the above-mentioned parameters, it is difficult to explain 

the accurate relationship between these parameters. On the oth- 

er hand, it is costly and time-consuming to study different con- 

ditions and obtain sufficient experimental data that encompass- 

es most conditions (Wan et al., 2019). Thus, modeling and opti- 

mization of wastewater treatment processes utilizing artificial 
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intelligence (AI) due to their unique advantages (like a low num- 

ber of parameters, low computation time and no need for bound- 

ary and initial condition), with a focus on achieving the maxi- 

mum removal efficiency of various pollutants, especially dye 

pollutants, has received much attention (Fan et al., 2018; Mos- 

savi et al., 2019). Some papers investigated the performance of 

this method in modeling of different wastewater treatment pro- 

cesses such as using artificial neural network (ANN) with 54 

samples for adsorption of Methyl Orange (MO) (Tanhaei et al., 

2016), Acid Red 33 electrochemical decolorization modeling 

by ANN with 78 samples (Chianeh et al., 2017), modeling of 

Rhodamine B remediation from aqueous solutions via the phy- 

toextraction method by ANN (with 154 samples) and random 

forest (RF) (Kooh et al., 2019), utilizing of support vector ma- 

chine (SVM) with 249 samples for modeling the photocatalytic 

degradation of methyl tert-butyl ether (Oyehan et al., 2019), re- 

duction of phosphorus modeling by linear regression, ANN, and 

M5P with 106 number of data (Kumar and Deswal, 2020), model- 

ing of Pb+2 adsorption by ANN and multivariate linear regres- 

sion (MLR) using 20 samples (Ashrafi et al., 2020), and adsorp- 

tion Pb(II), Ni(II), and Cu(II) modeling through ANN with 476 

samples (Hanandeh et al., 2021).  

The strengths and weaknesses associated with using state- 

of-the-art optimization algorithms, employing different data 

mining, presenting interpretable relations, sensitivity analyz- 

ing, and using sufficient data in some studies of wastewater treat- 

ment have been outlined in Table B.1 in Appendix B. The limi- 

tation in the amount of experimental data and using classical 

data mining techniques for the prediction of optimal parameters 

are the most important drawbacks of all mentioned studies, but 

the modeling of proposed approaches requires a large number 

of data to provide a trustworthy model. In addition, as mention- 

ed previously, increasing experimental data for the modeling 

process require high cost and time. In this regard, interpolating 

data using different methods like kriging (KRG) and inverse 

distance weighting (IDW) can be applied to overcome this pro- 

blem. The literature review about the interpolation method is 

presented in Appendix C. On the other hand, in the case of the 

optimization of parameter values in the EAOPs modeling, the 

whale optimization algorithm (WOA) as a new and powerful 

optimization algorithm proposed by Mirjalili and Lewis (2016), 

can be a suitable candidate. It is worth noting that, the WOA 

has been inspired by the hunting behavior of the whales and 

also has successfully been used in different fields (Mohammadi 

et al., 2019; Anaraki et al., 2021).  

According to our best knowledge, there is a lack of a com- 

prehensive study of pollution modeling based on all strength 

points such as utilizing different data mining, presenting inter- 

pretable relations, using sensitivity analyzing for determining 

the best parameters of data mining, employing sufficient data 

for training data mining, and predicting optimal treatment con-

ditions. It is very important to consider strength points like these 

during modeling processes based on experimental data such as 

electrochemical removal data. While only one or two of the afore- 

mentioned strengths were taken into account in most of the in- 

vestigated studies. 

Hence, a new approach has been developed for the first time 

in the current study for electrochemical removal modeling of 

the colored wastewater containing Reactive Orange 7 (RO7) as 

a dye sample pollutant. Unlike other investigated studies, this 

approach incorporates all of the state-of-the-art optimization al- 

gorithms, employing different data mining techniques, present- 

ing interpretable relations, and using sufficient data. Indeed, the 

presented approach in this work, regarding to the insufficient 

experimental data, the interpolating methods were used for gen- 

erating more data without consuming time and additional cost 

to conduct more experiments for achieving reliable models. For 

this reason, the performance of KRG and IDW interpolation 

methods is compared. Furthermore, based on the complexity of 

the relationships of the parameters in electrochemical removal 

processes, the MLR, RR, MNLR CART, RF, ANN, KNN, and 

SVM techniques are used to model the electrochemical removal 

of RO7. Subsequently, since the prediction of optimal condi- 

tions leading to the highest levels of pollutant removal is still a 

matter of debate, the hybrid of WOA and best-obtained model- 

ing method is used to solve this issue. Therefore, the presented 

approach in this work is the combination of the KRG, a com- 

putation intelligent method based on data mining techniques 

(MLR, RR, MNLR, CART, RF, ANN, KNN, and SVM) and 

optimization algorithm (WOA). 

2. Materials and Methods 

2.1. Data Description 

For this study, the experimental data were collected from 

the 31 proposed conditions by central composite design (CCD) 

for the RO7 removal process using Ti/MWCNT (multi-walled 

carbon nanotubes) anode that the experiments were carried out 

by Chianeh and Avestan (2020). It’s worth noting that MWCNT 

with beneficial features such as superb mechanical strength and 

chemical stability and also large specific surface area have at- 

tracted great attention as the anode material for electrochemical 

degradation of various pollutants (Chianeh and Parsa, 2015; 

Duan et al., 2019; Esmaelian et al., 2019). The Ti/MWCNT an- 

ode was prepared by electrophoretic deposition (EPD) method. 

Besides, response surface methodology (RSM) using CCD was 

employed to investigate the relationship and interaction be- 

tween the effective parameters (pH, electrolyte concentration 

(C), current density (I), and electrolysis time) as well as to 

achieve the optimum condition for the electrochemical decol- 

orization of RO7. The preparation steps of the Ti/MWCNT 

electrode and the electrochemical removal process are depicted 

in Figure D.1 in Appendix D. Therefore, in this study, obtained 

data are used as inputs for decolorization efficiency (DE) mod- 

eling. In Table D.1 in Appendix D, the original experimental an- 

alysis data and their statistical characteritics are presented. As 

can be seen from Table D.1, the maximum values of average 

and standard deviation are related to DE with values of 35.099 

and 22.354%, respectively. While the minimum of mentioned 

values is related to C and with values of 1.50 and 0.49 g/L. Fur- 

thermore, due to the uncertainty of some experiments (Rows 1, 

6, 11, 12, 15, 19, and 23 in Table D.1), there are different decol- 

orization efficiency values, therefore the average of the above 

seven data has been used. Thus, the final number of original 

data used in this work is 25. 
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2.2. Methodology 

In the present study, a new approach is presented for dye 

pollutant removal from synthetic wastewater. This approach is 

based on the combination of experimental data analysis (EDA), 

interpolation method (IM), and computational intelligence te- 

chniques include different data mining methods and optimization 

algorithm. The presented approach consists of four main steps: 

Processing Data: Experimental data including inputs and 

output are randomly divided into training (70%) period and test- 

ing (30%) period. It is worth noting that, using randomly divid- 

ing the data can avoid over fitting. Furthermore, it is evident 

from Table D.1 that the range of data is different. Therefore, 

the inputs data is scaled to [0, 1] as follows: 

 

min

max min

scale

X X
X

X X





 (1) 

 

In which, Xscale, X, Xmin and Xmax are scaled inputs data, original 

inputs data, minimum and maximum of inputs data, respective- 

ly. Scaling data leads to lower computation costs and the effi- 

ciency of modeling. 

Generating New Data: The IDW and KRG methods can 

be used for generating new data from original data by interpola- 

ting. For this purpose, the following approach is used: (a) First, 

IDW and KRG methods are trained based on the experimental 

data. Then, the cross-validation method is employed for train- 

ing the IDW and KRG methods (Stone, 1974; Rodriguez et al., 

2010). This method involves executing IDW and KRG 25 times 

(number of new original experimental data), where 24 rows of 

data are considered for training the interoplation methods in 

each execution. Afterward, interpolation methods estimate the 

one remaining data. In the next step, the mean of evaluation cri- 

teria between DE and estimated DE during all 25 executions is 

considered as final evaluation criteria's in the testing period. 

Subsequently, the appropriate interpolation method with accu- 

rate evaluation criteria's in the testing period is selected for gen- 

erating new data. (b) In this part of the mentioned approach, 

there is a black-box model (best-trained interpolation method) 

generates new DE data for each input set including pH, C, I, 

and time. Input sets data can be defined by the user, however, 

input data imposed to IDW or KRG must be in an acceptable 

range. Indeed, it is assumed in the present study that stated 

ranges are similar to original input data, and the lower and up- 

per bounds of newly generated input data are equal to the mini- 

mum and maximum of the original input data. Then N new input 

data are randomly generated and are imposed to the best inter- 

polation method. After that, the best interpolation model gener- 

ates new data based on the random input data. It is worth men- 

tioning that random inputs are generated by Equation 2. This 

equation generates a random number between the lower and up- 

per bound of the original inputs data: 

 

( )newX lb ub lb R   
r

 (2) 

 

where Xnew is new data, lb is lower bound of experimental in- 

puts, ub is upper bound of experimental inputs, and R⃗⃗  is ran- 

dom vector. Numerous reliable studies, such as (Ehteram et al., 

2018; Farzin and Anaraki, 2021; Ferdowsi et al., 2021; Karami et 

al., 2021), employed this equation to generate random numbers 

between specific lower and upper bounds. The pseudo-code of 

generating new data is shown in Figure 1. (c) New DE data are 

generated by applying the generated inputs to the best interop- 

lation method. Thus, the new data are merged with original data 

to achieve more reliability. 

 

 
 

Figure 1. The pseudo-code of generating new data. 

 

DE Modeling: The original and interpolated data are ap- 

plied to data mining techniques include multivariate linear re- 

gression (MLR), ridge regression (RR), multivariate nonlinear 

regression (MNLR), artificial neural network (ANN), classify- 

cation and regression tree (CART), k nearest neighbor (KNN), 

support vector machine (SVM), and random forest (RF). Then, 

each data mining technique estimates the DE. (a) Sensitivity 

analysis: it is important to note that each data mining technique 

has some parameters that can affect the final results. Accord- 

ingly, sensitivity analysis is used to determine the parameters 

of each algorithm. (b) Evaluation of techniques: the best data 

mining technique is selected based on the evaluation criteria in- 

cluding mean absolute error (MAE), root mean square error 

(RMSE), and correlation coefficient (R), determination coeffi- 

cient (R2). 

Prediction of optimal DE: In finally, the hybrid of SVM 

and WOA (SVM-WOA) algorithm is employed to predict maxi- 

mum DE and finding the optimum input variables (pH, C, I, and 

time). It is worth pointing out that the hybrid of one data-driven 

method and WOA uses applications of both mentioned methods 

without changing the accuracy of the data-driven. Indeed, to 

estimate the objective function (or DE) for each whale position, 

WOA requires a data-driven method. This data-driven method 

must have more accuracy than other investigated algorithms to 

generate reliable results for optimization DE. The scheme of 

the presented approach is illustrated in Figure 2. Additionally, 

the explanations of MLR, MNLR, RR, ANN, CART, KNN, and 

RF are presented in Appendix F to Appendix L. 

 

2.2.1. Inverse Distance Weight (IDW) 

IDW is an interpolation method with the following main 

equation: (Johnston et al., 2001): 

 

1

( )
n

i i

i

Y x W Z


  (3) 

 

where W is weight of each observed value, and n is number of 

points around the unmeasured value. W based on the inverse of 

the distance between unmeasured and observed values, the W 

is calculated as follows: 
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Figure 2. Presented approach. 
 

1

1 1
pp n

i
i jj

W
d d



      
   

  (4) 

 

In which, d is Euclidian distance between unmeasured value 

and observed value. p is power that impacts weight. 

 

2.2.2. Kriging (KRG) 

One of the most known interpolation methods is KRG that 

estimate the unmeasured values by the following equation (Simp- 

son et al., 2001): 

 

1

( ) ( ) ( )
n

i i

i

Y x W f x Z x


   (5) 

 

where Z is a realization of a stochastic process term with zero 

mean and. The spatial correlation function can be calculated as 

follows (Simpson et al., 2001): 

 

 2[ ( ), ( )] ,i j i jCov Z x Z x R x x  (6) 

 

In which,  2 is process variance and R denotes the correlation. 

There are different correlation functions, and Sacks et al. (1989) 

has presented the Gaussian correlation function, which is often 

used. The Gaussian correlation function is given below (Simp- 

son et al., 2001): 
 

  2

1

exp
nx

i j

l l l l

l

R x x R  



      (7) 

 

where  and nx are hyper parameter and number of inputs, re- 

spectively. For the term of Wi fi(x), there are different types in- 

cludes constant, linear, and quadratic that we used constant type 

such as Simpson et al. (2001). More details on the KRG method 

can be found here (Sacks et al., 1989). 

 

2.2.3. Support Vector Machine (SVM) 

SVM is a data mining technique that is developed by (Vap- 

nik and Mukherjee, 2000). SVM is composed of only three lay- 

ers (input layer, one hidden layer, and output layer). The main 

equation in SVM is as follows: 

 

   *

mod

1

,
n

i i i

i

Y Kernel x x bias 


    (8) 

 

where αi and αi
* are lagrangian multiplier, x is input variable, xi 

is ith input variable, Kernel is kernel function, n is number of 

training data. In SVM, lagrangian multiplier and bias are deter-

mined based on the quadric optimization method by minimize-

ing the empirical error and complexity of the algorithm. SVM use 

kernel function for mapping features from a higher dimension 

space to a lower dimension space. This matter helps SVM to con- 

sider the nonlinear relationship between inputs and outputs as 

linear. While there are different kernel functions, the radial ba-

sis kernel function (RBF) frequently has been used in many stud- 

ies such as (Karamouz et al., 2009; Shiri et al., 2020). Therefore, 

in the current study, the RBF kernel function is used. The RBF 

formula is as follows: 

 

2

2exp
2

ix x
Kernel



  
   

 
 (9) 
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In which,  is kernel width. As mentioned above, SVM used a 

global optimization algorithm in its structure. In this sense, SVM 

is not trapped in local optimum like ANN, which used a gra- 

dient-based optimization algorithm. Besides, since the SVM is 

composed of three layers, there is no need to determine the struc- 

ture of this algorithm. Another beneficial feature of the SVM is 

it has only two parameters to execute, which include cost coef- 

ficient or C (is refered to minimizing the empirical error), and 

kernel width or gamma. It should also be noted that C and gam- 

ma must be determined carefully because both parameters have 

high effects on the final performance of SVM. For more details 

see (Chen et al., 2019; Cui et al., 2021). The structure of SVM 

is shown in Figure 3. 

 

 
 

Figure 3. The SVM structure. 

 

2.2.4. Whale Optimization Algorithm (WOA) 

WOA is one of the state-of-the-art optimization algorithms 

that is introduced by (Mirjalili et al., 2016). This algorithm is 

inspired by the hunting behavior of humpback whales. WOA is 

comprised of three operators including Encircling Prey, Bub-

ble-Net Attacking Method, Search for prey, these operators are 

explained as follows: 

Encircling Prey: In this operator, the humpback whale 

moves to the prey position. In WOA, the best position of whales 

obtained so far has been considered the prey position. This be- 

havior is down as follows (Mirjalili and Lewis, 2016): 

 

 *D CX X t 
rr r r

 (10) 

 

  *1 .X t X A D  
rr r r

 (11) 

 

where D⃗⃗  and A⃗⃗  are coefficient vectors and X⃗⃗ ⃗⃗ *, X⃗⃗ (t) and X⃗⃗ ⃗⃗ (t+1) 

are best obtained position so far, current position and new po- 

sition of whales, respectively. The A⃗⃗  and C⃗⃗  vectors are computed 

as follows (Mirjalili and Lewis, 2016): 

 

2A ar a 
r r r r

 (12) 

 

2C r
r r

 (13) 

where a⃗  linearly decreases from 2 to 0 by increasing the num- 

ber of iteration and r  is a random vector between 0 to 1. 

Bubble-Net Attacking Method: In nature, whales swim 

to prey and create the shrinking spiral patch shape around prey 

as simultaneously. Since these two movements are simulta- 

neous, WOA considers the same probability for each one of the 

movements. This behavior is down as follows (Mirjalili and 

Lewis, 2016): 

 

 
*

' *

. 0.5
1

.cos(2 ) 0.5b l

X A D if P
X t

D e l X if P

  
  

 

rr r
r

r r  (14) 

 

In which,  ' *D X X t 
r r r

and b are constant values for defin- 

ing the logarithmic shape of spiral, l is a random number in the 

range of -1 to 1, and P is a random number. 

Search for Prey: In this behavior, the position of whales 

is updated based on the random position as follows (Mirjalili 

and Lewis, 2016): 

 

 randD CX X t 
rr r r

 (15) 

 

 1 .randX t X A D  
rr r r

 (16) 

 

In which, X⃗⃗ rand is a random position from search space. In the 

present study, X⃗⃗ (t) is input data including pH, C, I, and time 

and the best position is the position of the whale with maximum 

DE. Indeed, each whale in WOA has one position (pH, C, I, and 

time) and also has one objective function (value of DE). How- 

ever, WOA has not able to estimate DE for each position of the 

whale. For this reason, there is a need to estimate the DE using 

one modeling method. Hence, in this study, the objective func- 

tion, or in other words, the value of DE, is estimated using the 

SVM method as a more accurate model. 

 

 
 

Figure 4. The pseudo-code of SVM-WOA. 

 

2.2.5. Hybrid of SVM and WOA (SVM-WOA) 

In the present study, the SVM-WOA is employed for pre- 

dicting optimal DE. In this method, mentioned parameters namely 

pH, C, I, and time are considered as decision variables, as well 

as the DE value is considered as the objective function. In SVM- 
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WOA, the SVM is first trained based on the inputs including pH, 

C, I, and Time along with DE as the target data. Following, the 

trained model is used to predict the DE for each input set. In 

the next step, WOA generates the initial population, which each 

search agent in this population has one position (pH, C, I, and 

time) and one objective function (estimated DE by SVM). In 

this regard, the position of each whale is the input set of SVM, 

and trained SVM predicts the DE for this input set. After gen- 

erating the initial population, the position of whales is updated 

based on the equations 14 ~ 20 to achieve maximum DE and cor- 

respond input data. The pseudo-code of SVM-WOA for pre- 

dicting optimal DE is demonstrated in Figure 4. 

 

2.2.6. Evaluation Criteria 

In this study, the MAE, RMSE, R, and R2 (Kvålseth, 1985; 

Kasuya, 2019) are used to evaluate the interpolation and data 

mining techniques. These evaluation criteria are frequently em- 

ployed by many studies such as (Azad et al., 2019a, b; Valik- 

han-Anaraki et al., 2019). The formula of MAE, RMSE, and R2 

criteria are presented in Appendix E. 

3. Results and Discussion 

3.1. Sensitivity Analysis of Data 

The Pearson correlation coefficient is used as a way to mea- 

sure the influence of input variables on output variables (DE) 

as well as input variables on each other as shown in Figure 5. 

According to the results of this Figure, input variables have no 

correlation with each other which leads to efficient modeling 

because of input variables are independent of each other. As 

seen in Figure 5, the magnitude of the correlation between input 

and output variables is varied from 0.07 to 0.63. It is worth not- 

ing that, the maximum correlation magnitude is related to Time, 

whereas the minimum correlation magnitude is related to C (g/L). 

In addition, the negative and positive correlations show the in- 

verse and direct relationships between inputs and DE efficiency, 

respectively. With this in mind, by increasing all input variables 

except pH, enhancement of DE efficiency can be achieved. In 

contrast, reducing the pH value can lead to an increase in the 

DE efficiency as a target. Besides, sensitivity analysis of input 

variables in Appendix M (Table M.1) shows that pH, C, I, and 

Time are the best input combination for modeling DE. 

 

3.2. Sensitivity Analysis of Proposed Techniques 

Interpolation and data mining techniques have some pa- 

rameters for executing that affect their final result significantly. 

Hence, determining these parameters as carefully is an inevitable 

issue. In the present study, the best parameters of interpolation 

and data mining techniques include IDW, KRG, RR, ANN, 

KNN, SVM, and RF are obtained by sensitivity analysis. In this 

process, different values are assigned to considered parameters, 

then mentioned techniques are executed based on the assigned 

values. Afterward, RMSE is measured for each assigned value, 

and the best parameter value is selected in each method. The 

sensitivity analysis of IDW, KRG, RR, ANN, KNN, SVM, and 

RF are presented in Appendix N (Figures N.1 ~ N.5). As seen, 

for IDW, the best value of the power parameter is equal to 28，
and for KRG, the best value of tetha0 is 0.037. Also, the best 

value of Gamma in RR for original data is equal to 0.02 and for 

new data equal to 0.01. Additionally, the best value of RMSE 

of original data in ANN is related to lbfgs learning algorithm 

with 6 and 18 neurons for first and second layers, whereas the 

minimum RMSE for new data is obtained from lbfgs learning 

algorithm with 20 and 16 neurons in first and second layers, re- 

spectively. Furthermore, in KNN, the minimum value of RMSE 

is related to neighbor number 6 for both original and new data. 

In SVM, the best value of C for both original and new data is 

1,000, and the best value of Gamma for original and new data 

is 0.2 and 1.2, respectively. 

 

 
 

Figure 5. Sensitivity analysis of data. 

 

3.3. Obtained Interpretable Relation for MLR, RR, and 

MNLR 

In this section, the linear relations obtained by MLR, and 

RR as well as nonlinear relation obtained by MNLR are pre- 

sented. Relations 17 and 18 are related to MLR for original and 

new data, respectively. Relations 19 and 20 are obtained by RR 

and are related to original data and new data, respectively. The 

nonlinear relations 21 and 22 are computed by MNLR for new 

data and original data, respectively: 

 

43.449 41.151 1.098 21.996DE pH C I         

25.825 Time  (17) 

 

39.457 50.702 4.244 25.545DE pH C I         

28.480 Time  (18) 

 

42.429 38.965 0.590 21.245DE pH C I         

25.053 Time  (19) 

 

39.457 50.690 4.243 25.539DE pH C I         

28.473 Time  (20) 
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2 2 2

143.275 12.849 52.299 29.473

10.637 1.411 1.663

0.379 4.760 1.305

0.355 0.546 13.952 2.201

DE pH C

I Time pH C pH I

pH Time C I C Time

I Time pH C I

       

        

        

       

 

20.115 Time   (21) 

 

2 2 2

154.819 14.649 30.985 35.302

13.168 1.179 2.699

0.853 5.053 0.744

0.104 0.438 14.124 2.428

DE pH C

I Time pH C pH I

pH Time C I C Time

I Time pH C I

       

        

        

       

 

20.169 Time   (22) 

 

3.4. Selecting the Best Interpolation Method 

In this section, to determine the best interpolation method 

between the IDW and KRG, different evaluation criteria include 

MAE, RMSE, and R2 have been used which the obtained results 

are compared in Table 1. A comparison of the results reveals 

that the KRG leads to better results than IDW with 47.080, 

36.914, and 3.415% more accurate values of MAE, RMSE, and 

R2, respectively. Although both IDW and KRG methods use 

surrounding points to obtain unmeasured points, KRG gener- 

ates more accurate results using Gaussian correlation function 

for computing unmeasured values instead of inverse distance. 

 

Table 1. The Interpolation Method Accuracy 

Method MAE RMSE R2 

IDW 12.485 14.550 0.905 

KRG 6.607 9.179 0.921 

KRG vs. IDW (%) -47.080 -36.914 3.415 

 

Table 2. Generated Data by KRG 

Row pH C (g/L) I (mA/cm2) 
Time 

(min) 
DE (%) 

1 8.346 0.848 3.117 13.969 40.833 

2 10.600 2.171 4.066 12.699 9.693 

3 9.342 1.587 4.806 18.174 29.625 

4 9.535 2.293 3.067 5.475 17.553 

5 4.391 0.946 2.567 9.863 46.817 

. . . . . . 

. . . . . . 

. . . . . . 

695 6.561 1.390 2.781 11.677 51.117 

696 10.631 2.224 4.091 18.385 1.544 

697 9.532 0.922 3.918 9.434 20.608 

698 3.621 0.921 3.337 14.865 74.709 

699 9.178 2.001 3.136 5.159 21.364 

700 3.356 0.673 2.393 7.652 31.889 

Min 3.000 0.500 1.000 0.000 0.000 

Max 11.000 2.500 5.000 20.000 89.756 

Average 6.972 1.500 3.046 12.456 39.200 

Standard 

deviation 
2.300 0.567 1.170 4.294 21.365 

3.5. Generating New Data by KRG 

Generated new data by the KRG method (best-interpolated 

method) is tabulated in Table 2. According to the results of this 

table, the range of new data is equal to the original data which 

is due to the combination of the original and interpolated data. 

Besides, the maximum values of average and standard devia- 

tion of new data are related to DE, and the minimum value of 

the mentioned parameters is related to C, which is similar to the 

original data in Table D.1. Moreover, the average and standard 

deviation of the new data are close to those of the original data. 

Therefore, using KRG for generating new data maintains the 

distribution of original data. This matter shows the acceptable 

results of KRG that are good for the training of KRG. 

In the following, Figure 6 illustrates the new DE data which 

is scattered over a range of 0 to 81.120. Based on this Figure, 

the dispersion of new data of DE is high, therefore it is expected 

to linear data mining techniques have results with less accurate 

than nonlinear data mining techniques. 

 

3.6. Computational Intelligence Techniques Results 

The results of comparing data mining techniques for origi- 

nal and new data are set out in Table 3. It is apparent from this 

Table that the best results for original data are related to the 

ANN technique (by considering MAE, RMSE, R and R2 criteria). 

In terms of accuracy in DE modeling, other techniques include- 

ed SVM, RR, and MLR are also ranked second, third, and 

fourth, respectively. While, SVM has the first rank (based on 

MAE, RMSE, R and R2 criteria) for new data, followed by ANN 

and MNLR. Moreover, the results of RR and MLR with a small 

difference are the weakest. The MAE, RMSE, R and R2 for SVM 

than RR and MLR are more accurate up to 97.13, 98.30, 14.42 

and 50.83%, respectively. In Table 3, by comparing the original 

and new data results, it can be concluded that generating new 

data in all data mining techniques except linear technique (MLR 

and RR) leads to increased accuracy of DE modeling. For in- 

stance, using the best data mining technique obtained for new 

data (SVM) compared to using the ANN as the best data mining 

technique obtained for original data has improved MAE, RMSE, 

R and R2 by 95.764, 77.395, 1.52 and 2.77%, respectively. This 

improvement of accuracy can be attributed to the increasing num- 

ber of data, as well as enhancement of oscillation and nonlin- 

earity of data (Figure 6). The increasing number of data leads 

to better training of data mining techniques, but on the other 

hand, the oscillation of data and complexity of modeling in- 

crease. Therefore, nonlinear data mining techniques such as SVM 

and MNLR by increasing the number of data estimate the non- 

linearity relationship between inputs and outputs with good ac- 

curacy. However, MLR and RR are failed to estimate the non- 

linearity relationship between input and output for new data. Fur- 

thermore, the ANN algorithm has high performance for origi- 

nal and new data that it is for processing data in multilayers and 

the ability for solving linear and nonlinear problems. The supe- 

riority of SVM over ANN, MNLR, KNN, RF and CART is us- 

ing the global optimization method (quadratic programming) 

for finding their weights of inputs, unlike ANN that used gra- 

dient-based optimization methods. In addition, using the Ker- 

nel function helps SVM consider nonlinear relationship between  
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Figure 6. The variation of DE data. 

 

 
 

Figure 7. Comparing best data mining technique and observed data for (a) Original data and ANN output and (b) New data and 

SVM output. 

 

 
 

Figure 8. Convergence curve of minimum, average, and 

maximum for optimized DE. 

 

inputs and output as a linear relationship. Thus, the superiority 

of MNLR over KNN and RF is to consider the nonlinear rela- 

tionships between inputs and outputs using the quadratic of in- 

puts and interaction of inputs. According to other results of Table 

3, KNN and RF have close results and are better than CART， 

which mainly due to the nonlinear structure of KNN using sim- 

ilarity of neighbors in this technique as well as the use of multi- 

tree and multi times random resampling the dataset in RF. Also, 

the better accuracy of CART than MLR and RR is related to 

partitioning data into subsets that help to solve nonlinear prob- 

lems. 

In the following, the observed and modeled DE for origi- 

nal (by ANN) and new data (by SVM) are illustrated in Figure 

7. From this Figure, the minimum and maximum values of DE 

are modeled with good accuracy. Besides, the accuracy of DE 

modeling for new data is more than for the original data, as evi- 

denced in Table 3. 

 

3.7. Determination of Optimal Conditions and Validation of 

the Model 

In finally, the SVM-WOA is applied for predicting the op- 

timal value of input variables (pH, C, I, and Time) and the max- 

imum value of DE. For this purpose, the population size and 

the maximum number of iteration are set to 50 and 500 based 

on the study of (Mirjalili and Lewis, 2016). Thus, to reduce the 

uncertainty of the SVM-WOA results, it is run 15 times. Figure 

8 demonstrates the convergence curve of minimum, average, 

and maximum results for 15 random runs. It can be seen that  
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Table 3. The Data Mining Results 

Data Algorithm  MAE  RMSE  R  R2 

   Train Test  Train Test  Train Test  Train Test 

Original MLR  8.416 9.659  7.336 7.910  0.919 0.909  0.845 0.785 

RR  8.459 9.597  7.339 7.864  0.919 0.915  0.843 0.794 

MNLR  1.810 8.313  2.310 10.244  0.994 0.912  0.988 0.492 

ANN  3.281 5.370  1.924 4.056  0.988 0.985  0.976 0.973 

CART  0.000 19.793  0.000 17.077  1.000 0.569  1.000 0.015 

KNN  13.388 14.362  11.667 12.450  0.852 0.938  0.607 0.673 

SVM  2.512 5.207  1.061 4.073  0.993 0.975  0.986 0.969 

RF  5.442 17.724  4.154 16.023  0.980 0.726  0.935 0.343 

New Data MLR  10.566 10.346  8.536 8.530  0.870 0.874  0.730 0.663 

RR  10.566 10.347  8.536 8.530  0.870 0.874  0.757 0.761 

MNLR  2.974 3.064  3.909 4.228  0.984 0.978  0.967 0.956 

ANN  0.628 1.399  0.492 1.040  1.000 0.998  0.999 0.996 

CART  0.000 8.314  0.000 6.332  1.000 0.922  1.000 0.909 

KNN  4.227 5.049  3.385 3.726  0.982 0.976  0.961 0.943 

SVM  0.103 0.297  0.085 0.145  1.000 1.000  1.000 1.000 

RF  1.750 5.084  1.343 3.732  0.997 0.973  0.993 0.942 

Best for new data vs. Best for 

original data (%) 

 
-96.86 -94.47  -95.58 -96.43  1.21 1.52  2.45 2.77 

 

Table 4. The SVM-WOA Optimization Results 

Iteration 

number 

Run Number 

1 2 3 4 5 … 13 14 15 min average max 

1 89.8 82.7 86.7 86.4 89.4 … 84.0 90.6 88.7 81.0 87.0 90.6 

2 89.8 83.8 89.0 88.8 89.4 … 87.3 90.6 90.2 83.2 88.0 90.6 

3 90.8 84.4 89.5 89.9 90.0 … 88.3 90.8 90.2 83.9 88.6 90.8 

4 90.8 84.5 89.9 90.4 90.2 … 88.6 90.8 90.3 84.5 88.9 90.8 

5 90.9 85.3 89.9 90.6 90.2 … 89.1 90.8 90.4 85.0 89.2 90.9 

6 90.9 85.4 89.9 90.6 90.3 … 89.8 90.8 90.5 85.4 89.3 90.9 

7 90.9 85.5 90.0 90.6 90.4 … 89.9 90.9 90.7 85.5 89.5 90.9 

8 90.9 85.5 90.0 90.7 90.4 … 90.5 90.9 90.7 85.5 89.6 90.9 

9 90.9 85.6 90.0 90.7 90.4 … 90.5 90.9 90.7 85.6 89.7 90.9 

10 90.9 85.7 90.0 90.8 90.4 … 90.5 90.9 90.7 85.7 89.8 90.9 

11 90.9 85.8 90.0 90.8 90.4 … 90.5 90.9 90.8 85.8 89.9 90.9 

12 91.0 85.9 90.0 90.8 90.4 … 90.5 90.9 90.8 85.9 90.0 91.0 

13 91.0 85.9 90.1 90.8 90.4 … 90.5 90.9 90.8 85.9 90.0 91.0 

14 91.0 85.9 90.1 90.9 90.4 … 90.5 90.9 90.8 85.9 90.1 91.0 

15 91.0 85.9 90.1 90.9 90.4 … 90.5 90.9 90.8 85.9 90.1 91.0 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

… . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

500 91.0 90.8 91.0 91.0 90.8 … 91.0 91.0 91.0 90.8 90.9 91.0 

 

the results converged to a DE value of 91% with a maximum 

of 15 iterations. 

In Table 4, the DE for 15 random runs of SVM-WOA are 

presented. According to the results, the difference between min- 

imum (DE = 90.8%), average (DE = 90.9%), and maximum DE 

(DE = 91%) of 15 random runs is very Low (up to 0.2%), which 

shows the high performance and reliable results of SVM-WOA 

algorithm. Afterward, in order to validate the statistical optimiza- 

tion results, a confirmation experiment was done by setting the 

operational parameters at their optimal values as tabulated in 

Table 5. The removal efficiency of RO7 (DE%) was 88.7%, 

which had good agreement with predicted values by the SVM- 

WOA model. Therefore, this closeness proved that the proposed 

model could describe accurately the electrochemical removal 

of RO7 on Ti/MWCNT anode as well as the used prediction 

model was appropriate to optimize the operational parameters. 

 

Table 5. Predicted Optimal Conditions and Observed DE% 

pH 
NaCl 

(g/L) 

I 

(mA/cm2) 

Time 

(min) 

Predicted 

DE% 

Observed 

DE% 

4.2 1.5 4.2 18 91% 88.7 % 
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4. Conclusions 

In the present study, the interpolation methods with com- 

putation intelligent techniques include data mining algorithms 

and an optimization algorithm were combined for modeling 

and optimization of the electrochemical removal process. In 

this regard, IDW and KRG were used for generating new data. 

Then, data mining techniques include MLR, RR, MNLR, ANN, 

CART, KNN, SVM, and RF were employed for modeling the 

electrochemical removal of RO7 as a case study. Subsequently, 

in order to predict optimal DE, the hybrid of SVM and WOA 

was utilized. The main findings of the present study are as fol- 

lows: 

(1) KRG had better results than IDW based on the MAE, 

RMSE, and R2 (by 36.914% more accurate RMSE). 

Hence, this method was used for generating new data. 

(2) Generating new data leads to enhance DE modeling ac- 

curacy compared with using original data with in- 

creases of 95.764, 77.395, 1.52 and 2.77% in MAE, 

RMSE, R and R2 values, respectively.  

(3) The SVM provided more accurate results than other da- 

ta mining techniques with MAE, RMSE, and R2 up to 

97.13, 98.30, and 14.42%, respectively. 

(4) The interpretable relationship between DE and pH, C, I, 

and time was established. 

(5) The DE optimum value of 91% was obtained through 

SVM-WOA. The standard deviation of 15 random runs 

and the difference between the minimum and maxi- 

mum results of SVM-WOA was low. According to 

SVM-WOA, the best solution was 4.2, 1.5 g/L, 4.2 mA 

/cm2, and 18 min for pH, C, I, and time, respectively. 

The proposed approach had more reliable results and high- 

er accuracy, without the requiring of conducting additional ex- 

periments to obtain sufficient data. Therefore, this proposed ap- 

proach has a high potential to achieve the maximum electro-

chemical removal of RO7 as a model pollutant. 
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