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A.1. Inexact fuzzy interval linear programming 

FMP is an efficient method to deal with uncertainty in most of the real-world problems in the existence of ambiguous 

information. In this section, we introduce an inexact fuzzy interval linear programming problem in which coefficients of the objective 

function and some of constraints (the first kind constraints) are fuzzy interval numbers and remainder constraints (the second kind 

constraints) are expressed by fuzzy programming with symbol   for fuzzy inequality. 

A fuzzy set on is called a fuzzy number if it is normal, convex and upper semi-continuous and its support set is compact. 

LR fuzzy number is a special fuzzy number used frequently. By an explanation of a fuzzy number, LR fuzzy number 
0 1( , , , )LRA A A A A− += is defined by the following  

membership function: 
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where A−
, A+

indicate the left and right spread respectively; 0 1[ , ]A A  denotes the peak of fuzzy number; , :[0,1]L R  [0,1]→

with (0) (0) 1L R= =  and (1) (1) 0L R= =  are strictly decreasing, continuous functions.  

An inexact fuzzy interval linear programming model with fuzzy interval parameters and fuzzy inequalities thru symbol   is 

introduced by the following problem: 

Problem A.1 
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subject to  

Constraints with fuzzy interval parameters: 
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Constraints with interval parameters and fuzzy 

inequality symbol: 
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Non-negativity constraints:  
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where 
1 2, {1,2,..., }I I m , ( , , , )j j j j j LRc c c   − += , ( ,ij ija a −= , , )ij ij ij LRa  + and ( , , , )i i i i ib b b   − += are fuzzy interval numbers and

ija ,
ib and

jx are interval parameters /variables. An interval number has a known upper and lower bound but unknown distribution 

information (Ji et al., 2017). The objective function and the first part constraints of Problem A.1 include fuzzy interval parameters 

and hence have fuzzy interval properties. We will apply possibility measures to Problem A.1, which is fuzzy interval programming, 

for transforming it to interval programming.  

As the Problem A.1 includes fuzzy interval parameters, we will consider a lower bound to the objective function and possibility 

measure to the constraints whose coefficients are fuzzy interval parameters for construction of possibility degree to these constraints. 

According to the possibility theory, we construct a fuzzy chance constrained programming (FCCP) method and apply it to maximize 

this lower bound subject to the constraints under fuzzy framework. 

Based on extension principle in fuzzy framework, Z f   and 
1

n
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  are fuzzy interval events defined on possibility 

space ( , ( ), )P Pos  , whose possibility are: 
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where  
1

n

ij j i

j

a x a  

=

=   and Pos represents possibility. By using FCCP together with possibility measures, Problem A.1 is 

rewritten as follows:  

Problem A.2 

 

max  f                                                                                                             (A.7) 

 

subject to 
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0, 1,2,..., ,jx j n  =  
 

                                                                                                         (A.11) 

  

where  and h 
are defined as permitted possibility levels by the DMs. Now, we obtain a theorem to convert constraints (A.8) 

and (A.9) into parametric linear constraints.  

Theorem A.1: 

For any decision vector, it holds that: 
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where 
*L and 

*R are pseudo inverse functions defined as *( ) sup{ | ( ) }L t L t =   and *( ) sup{ | ( ) }R t R t =  . For more 

study about this theorem and for its proof, the reader can be referred to the recent study (Nematian, 2015) about fuzzy random 

programming method.  

By applying theorem A.1, we can easily rewrite Problem A.2 as follows:  

Problem A.3 
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subject to 
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0, 1,2,..., .jx j n  =  
 

                                                                                            

(A.17) 

 

Now we use Zimmerman fuzzy approach (Zimmerman, 1978) to this problem, which is a fuzzy interval linear programming 

problem, for converting it to a deterministic problem. 

We create the following membership functions for the objective function and relation (A.16) of Problem A.3. 
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According to the Zimmerman fuzzy programming approach, let us assume that 
corresponds to the membership functions 

of the fuzzy objective and/or constraints. Furthermore, DMs can establish the lower and upper bounds for the objective function 

they want to achieve, denoted by 
df
−  and 

df
+  respectively. 

By considering the above membership functions, and Bellman and Zadeh’s max-min operator, Problem A.3 will be transformed 
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to the flowing interval linear programming problem: 

Problem A.4 
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0 1,  0, 1,2,..., .jx j n  =  
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where 
 is the control variable matching to the satis-faction degree for the fuzzy objective and/or constrains. Indeed, 

 

denotes the satisfaction degree of the fuzzy constraints and is a variable between zero and one. Furthermore, 
df
−  and 

df
+  are the 

lower and upper bounds for the objective function respectively. 

Huang (1996) introduced interactive two-step method for the interval-programming problem. According to this method, a two-

step algorithm will be established to solve the above interval linear programming problem by analysing of interrelationships between 

the objective function and constraints and between their parameters and variables. Indeed, according to Huang (1996) and Huang 

& Cao (2011), the problem is divided into two deterministic sub-models. In the first sub-model, the goal is to reach the upper bound 

of the objective-function value ( f + ), so the parameters and variables are set in their correct bounds in a way that the upper bound 

for the objective function occurs. Conversely, the second sub-model is based on the lower bound of the objective function ( f − ).  

Definition A.1: An interval number [ , ]a a a − += is non-negative (positive) if 0a−  ( 0a−  ) and is non-positive (negative) if 

0a+  ( 0a+  ). 

Define the index sets *
1 { : ( ) 0}j jA j c R + = +   and *

2 { : ( ) 0}j jA j c R + = +   . We can formulate the first and second sub-

models based on index sets 1A  and 2A . The first sub- model, which corresponds to the upper bound of the objective function value, 

can be formulated as follows: 
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Accordingly, the second sub-model corresponding to the lower bound of the objective function value is formulated as:  

Problem A.6 
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Problems A.5 and A.6 are deterministic linear programming (LP) problems that can be solved by one of the LP solvers. 

The optimal solutions of Problem A.1 are: 

 

opt opt opt[ , ],j j jx x x j − +=    (A.35) 

 

opt opt opt[ , ],k k kZ Z Z k − +=    (A.36) 

 

where 
optjx− and

optjx+ are the optimal solutions,
optkZ − and 

optkZ + are optimal objective function values, which are obtained  

from problems A.5 and A.6. 

 

  



 

1 

 

Supplementary Note B: 

An algorithm is summarized for solving the problem discussed in section 2.2: 

Algorithm 1 

Data Entry: 

Step 0. Define fuzzy parameters of problem 4 by using information of experts or DMs. 

Model structure: 

Step 1. Apply the FCCP method based on possibility measures and Zimmermann fuzzy approach:  

-Convert problem 4 to problem 5. 

Step 2. According to Huang (1996): 

-Convert problem 5 to sub-problems 6 and 7.  

Solution Procedure: 

Step 3. Solve the obtained MIP problems by one of the MIP solvers. Then, the optimal solution of problem 4 is obtained  

by [ , ]ijk opt ijk opt ijk optS S S − += , 
ijk opt ij opt ijk optA q S  = − and ij opt ijq q −=  

ij ij optq z+ . 

 

  



 

 

) and promised target of water allocation quantity for crops in Ajabshir Qaleh 3mRial/Related economic data (. S1Table 

Chay dam 

Crops (j) Promised target of water allocation 

(in 103m3) (𝑞𝑖𝑗
±) 

Net benefit for 

water allocation  

(𝑁𝐵𝑗
±) 

Shortage cost 

(𝑆𝐶𝑗
±) 

i = 1 i = 2 i = 3 

Wheat [2.5, 3.8] [1.7, 2.5] [1.7, 2.5] [2217, 2710] [1713, 2093] 

Barley [2.5, 3.8] [1.7, 2.5] [1.7, 2.5] [1785, 2182] [1370, 1675] 

Potato [5.0, 7.5] [5.0, 7.5] [4.2, 6.3] [3928, 4801] [2728, 3335] 

Onion [5.0, 7.5] [5.0, 7.5] [4.2, 6.3] [4697, 5741] [3664, 4479] 

Grape [5.0, 7.5] [5.0, 7.5] [4.2, 6.3] [2264, 2767] [2597, 3174] 

Walnut [6.7, 10] [5.8, 8.8] [5.0, 7.5] [38532, 47094] [5426, 6241] 

Almond [5.8, 8.8] [5.0, 7.5] [4.2, 6.3] [47397, 57930] [6449, 7882] 

Apple [5.8, 8.8] [5.0, 7.5] [4.2, 6.3] [1184, 1447] [6371, 7656] 

 

 

Table S2. Related economic data (Rial/m3) and maximum allowable allocation amount from river for crops in Ajabshir 

Qaleh Chay dam 

Crops (j) 

maximum allowable 

water allocation (in 

103m3) (𝑞𝑖𝑗𝑚𝑎𝑥
± ) 

Allocation cost (𝐴𝐶𝑖𝑗
±) 

Transportation cost from river i 

(𝑇𝐶𝑖
±) 

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 

Wheat 17 11 10 [10.28, 10.47] [6.85, 20.93] [10.37, 12.56] 

[22.17, 

27.10] 

[17.85, 

21.82] 

[39.28, 

48.01] 

Barley 17 11 10 [7.13, 10.05] [13.7, 16.75] [7.28, 8.38] 

Potato 17 11 10 [8.57, 16.68] [8.22, 33.35] [13.64, 20.01] 

Onion 17 11 10 [10.28, 26.86] [6.85, 44.79] [16.37, 22.40] 

Grape 17 11 10 [7.13, 15.87] [13.70, 31.74] [17.28, 19.04] 

Walnut 17 11 10 [8.57, 37.45] [8.22, 62.41] [13.64, 31.21] 

Almond 17 11 10 [10.28, 39.41] [6.85, 78.82] [16.37, 47.29] 

Apple 17 11 10 [17.13, 45.94] [13.70, 76.56] [27.28, 38.28] 

 

 
 

) from other alternatives in Ajabshir 3m3of water and available amount of water (in 10 3Cost of increasing 1m .S3Table 

Qaleh Chay dam 

Crops (j) 𝐸𝑗𝑙
± Δ𝑇𝑗𝑙

± 

l = 1 l = 2 l = 3 l = 1 l = 2 l = 3 

Wheat [1028, 1047] [1713, 2093] [857, 1256] [9, 12] [9, 11] [10, 13] 

Barley [685, 1005] [1370, 1675] [822, 838] [9, 12] [9, 11] [10, 13] 

Potato [1637, 1668] [2728, 3335] [1364, 2001] [25, 27] [22, 24] [26, 28] 

Onion [1832, 2687] [3664, 4479] [2198, 2240] [21, 23] [27, 29] [27, 29] 

Grape [1558, 1587] [2597, 3174] [1298, 1904] [20, 22] [27, 29] [27, 29] 

Walnut [2713, 3745] [5426, 6241] [3256, 3121] [25, 28] [34, 36] [34, 36] 

Almond [3869, 3941] [6449, 7882] [3225, 4729] [28, 32] [26, 30] [25, 29] 

Apple [3186, 4594] [6371, 7656] [3823, 3828] [28, 32] [26, 29] [25, 29] 

 

 

)3m3(10 jto the farm planted with crop  capacities of canal (per hectare) from river 1Maximum  Table S4. 

Capacity of canal (𝑐𝑖𝑗
±) 

 j = 1 j = 2 j = 3 j= 4 j = 5 j = 6 j = 7 j = 8 

i=1 3 4 3 4 3 4 3 4 

 

 


