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ABSTRACT. Measuring oil concentration in the aquatic environment is essential for determining the potential exposure, risk, or injury 

for oil spill response and natural resource damage assessment. Conventional analytical chemistry methods require samples to be collected 

in the field, shipped, and processed in the laboratory, which is also rather time-consuming, laborious, and costly. For rapid field response 

immediately after a spill, there is a need to estimate oil concentration in near real time. To make the oil analysis more portable, fast, and 

cost effective, we developed a plug-and-play device and a deep learning model to assess oil levels in water using fluorescent images of 

water samples. We constructed a 3D-printed device to collect fluorescent images of solvent-extracted water samples using an iPhone. 

We prepared approximately 1,300 samples of oil at different concentrations to train and test the deep learning model. The model com- 

prises a convolutional neural network and a novel module of histogram bottleneck block with an attention mechanism to exploit the spec- 

tral features found in low-contrast images. This model predicts the oil concentration in weight per volume based on fluorescence image. 

We devised a confidence interval estimator by combining gradient boosting and polymodal regressor to provide a confidence assessment 

of our results. Our model achieved sufficient accuracy to predict oil levels for most environmental applications. We plan to improve the 

device and iPhone application as a near-real-time tool for oil spill responders to measure oil in water. 

 

Keywords: water pollution, oil spill assessment, plug-and-play device, fluorescence image, deep learning, convolutional neural network, 

confidence assessment

 

 
 

1. Introduction 

Quantifying oil during a spill response is a significant chal- 

lenge due to limits in the current detection methods (Fingas, 

2014). Conventional laboratory analytical methods follow the 

procedure: samples are collected in the field and shipped to a 

laboratory, and then benchtop instruments are used to determine 

the contaminant concentrations, often long after the oil spill has 

occurred. These standard methods generate high-quality data be- 

cause of their reliability, accuracy, and precision. However, there 

is a need for rapid screening of samples to support the spill re-

sponse or real-time decision making in the field. 

There are numerous methods and technologies to analyze 

oil during a spill. A recent publication outlined the various avail- 

able technologies and those used during the Deepwater Hori-  
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zon Oil Spill, and summarized them in the adapted Table 1 (White 

et al., 2016), where over 50,000 oil analysis samples and over 

52% of the water samples collected and analyzed were below 

detection limits for total polycyclic aromatic hydrocarbons (PAH) 

(NOAA, 2020). These technologies, ranging from field-deployed 

fluorometers or spectrophotometers to laboratory technology, 

have been adapted or ruggedized for use in the field. Among 

them, portable mass spectrometry or fluorometry can provide 

immediate results but has a high cost for instrumentation (Nixon 

and Michel, 2015). Remote sensing is also employed but has less 

accuracy in measuring pollution levels (Fingas, 2014). Simple 

methods for estimating oil levels in the field can be valuable for 

disaster responders and resource managers to evaluate chemi- 

cal contamination in natural systems. However, several funda- 

mental challenges must be overcome to implement these tech- 

nologies in rapidly measuring oil in aquatic samples as part of 

the oil spill response, including measurement accuracy, confi- 

dence assessment (error estimate) of measurement results, and us- 

ability. 

Among the oil detection methods, the fluorescence approach, 

either field-portable or laboratory-based, detects, and provides 

a semiquantitative analysis of oil from spills through the absorp- 

tion of ultraviolet light and emission as fluorescence (Fantasia  
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Table 1. Methods Used to Analyze Oil During a Spill and Their Performance 

Instrument Sensitivity Cost (USD) Usability Availability Portability 

Mass Spectrometer High 160,000 Specialized Limited Med 

Fluorometer High 6 ~ 13,000 Non-expert Wide Med 

Beam Transmissometer High 7 ~ 8,000 Non-expert Wide Low 

Holocam High Unavailable Specialized Limited Low 

Current Device Med < 200 Non-expert In Development High 

Note: Cost is listed in United States dollar (USD). 

 

et al., 1971; Keizer and Gordon Jr, 1973). Alternative methods 

have also been developed for oil detection in the field using qual- 

itative means by visually comparing fluorescence images of sam- 

ples to a set of reference oil standards (Russell et al., 2016). In 

addition, mobile platforms were adopted for detecting and quan- 

titating water quality in the field to assess oil in the environmen- 

tal water faster, more portably, and more cost-effectively (Seo 

et al., 2019). Some mobile systems employed artificial intelli- 

gence-based models (Gunda et al., 2019), and some mobile phone 

cameras detected wavelength beyond visible light (Granica and 

Tymecki, 2019). However, the accuracies of these methods are 

not high or robust enough for practical usage. In addition, they 

did not adopt cutting-edge computational methods such as deep 

learning to quantify oil concentration from images. 

Previous research describing the use of optical or fluores- 

cent data to estimate oil has relied on a linear regression stan- 

dard calibration curve to predict the level of oil in the sample. 

The development of a fluorescence-based screening tool shows 

the challenges in calibration using visible images (Russell et al., 

2016). Using this approach, visible differences in the oil levels 

are limited to between 1 to 100 mg/L; no visual predictions are 

possible at levels above 100 mg/L. Using a laboratory-based flu- 

orometer and gas chromatograph, the detection range of those 

same samples can be extended from 100 mg/L to nearly 1,000 

mg/L. One challenge with using standard linear regression cali- 

bration curves is that they rely on a standard used to calibrate 

the system and often deviate from linearity. Furthermore, oil is 

composed of a complex mixture of aromatic and aliphatic com- 

pounds (USEPA, 2003). The composition of these chemicals 

varies according to the source of crude material, aging, and pro- 

cessing. Traditional linear regression methods will fail to accom- 

modate for the variability of the composition of PAH and ali- 

phatic contribution to the total amount of oil. Statistical models, 

such as linear regression, are based on determining the statisti- 

cal relations between two parameters. In contrast, the focus of 

machine learning is the accuracy of the prediction based on the 

input parameters. Coupling sensors with machine learning mod- 

els offer the benefit of being able to interpret and address varia- 

tions in the data input to improve the model predictions (Han 

et al., 2019), including the variability of the sample composi- 

tion (oil type), degradation, fluorescence, system used to mea- 

sure fluorescence, and the visible image produced by the asso- 

ciated hardware. 

In this work, we developed new hardware to support fluo- 

rescent image collection of environmental water samples and 

devised our deep learning model for assessing oil content in the 

samples. Our hardware was built upon previous techniques for 

oil detection in the field using qualitative means by visually com- 

paring samples to a set of reference oil standards (Russell et al., 

2016). The water sample is collected, extracted, transferred to 

a cuvette and inserted into a device attached to a mobile phone. 

The phone is used to capture images of oil fluorescence upon 

illumination with a 380 nm light source. Such usage of cell 

phone or small computer to measure chemicals in a sample has 

been published previously for spectrophotometers and agricul- 

ture applications (McGonigle et al., 2018; Ayaz et al., 2019; 

Dutta, 2019; Pramanik et al., 2019). Other devices are small 

fluorometers but with the same problem that they rely on statis- 

tically based linear regression calibration curves not amenable 

for field applications of complex oil samples (McCracken et al., 

2017; Hossain et al., 2019). The main novelty of this work is to 

apply deep learning to quantify oil concentration. Following the 

attention mechanism paradigm in the residual channel attention 

block (Zhang et al., 2018), our model integrates histogram features 

with attention as a histogram bottleneck block (HBB). We further 

employed a confidence interval estimator to assess the perfor- 

mance. Our model is the first method to adopt deep learning on 

oil spill estimation, to the best of our knowledge. 

2. Methods 

2.1. Data Preparations for Training the Machine  

Learning Model 

2.1.1. Sample Generation 

We used the source oil from the Macondo Prospect well 

MC 252, located approximately 80 km southeast of the conflu- 

ence of the Mississippi River with the Gulf of Mexico, to train 

and test the model. We chose MC 252 riser oil as a standard ma- 

terial because it has a relatively high aromatic content (approxi- 

mately 16% aromatic hydrocarbons) and has been intensively 

studied (Reddy et al., 2012; Incardona et al., 2013; Forth et al., 

2017). As part of the spill response, an archived oil sample ob- 

tained from the riser insertion tube on the Enterprise Discoverer 

on May 20, 2010 (Joye et al., 2011) was selected for use. The 

percentage of aromatic-containing compounds in the source oil 

is approximately 25% by mass. The source oil is known to con- 

tain Nalco EC9323A defoamer (injected topsides), methanol (via 

subsea injection at 10,000 ppm), and VX9831 oxygen scavenger/ 

catalysts solution (subsea injection), as well as Corexit™ 9500 

and 9527 dispersants. However, the dispersants do not contain 

aromatic chemicals and are therefore not expected to interfere 

in the model’s training (Choyke and Ferguson, 2019). The MC 

252 oil has a large 100 nm bandwidth with a maximum of 424 

nm in the fluorescence spectrum. 

Further data acquisition was conducted by measuring the 

emission intensity at this wavelength (424 nm). Certified ACS 
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hexane was purchased from Fisher Scientific (Cat # H292-500, 

Waltham, Massachusetts) to prepare the oil samples. Oil was 

weighed gravimetrically to create a concentrated stock solution 

and dissolved by directly adding hexane in a volumetric flask. 

The different concentrations of the oil standards were created 

by serial dilution in duplicate using the concentrated stock solu- 

tion. Spectral analysis of the oil sample was conducted on a Hori- 

ba Fluorolog-3 spectrofluorometer with a xenon lamp light source 

and PMT detector (Kyoto, Japan). Before the data acquisition, 

the xenon lamp signal was verified via background scan cali- 

bration. The signal-to-noise ratio was determined by a water- 

Raman scan using laboratory 18 MΩ deionized water. The emis- 

sion spectrum of the oil sample was obtained by scanning a 10 

mg/L oil in hexane solution from 350 ~ 600 nm using a 380 nm 

excitation wavelength and 5 nm bandpass. A standard curve was 

generated by diluting a 500 mg/L oil in hexane by the appropri- 

ate volume to make a 0 ~ 50 mg/L oil in hexane series and mea- 

suring fluorescence at the emission maximum. 

 

2.1.2. Image Collection 

A three-dimensional (3D) printed cell phone adaptor (Fig- 

ure 1) was used to illuminate and collect images for the analysis 

using an iPhone model 7, 8 or SE. The device was designed us- 

ing the Tinkercad (tinkercad.com) 3D modeling program. The 

3D model of the device was exported as a .stl file to MatterCon- 

trol software (matterhackers.com) for slicing and printing. The 

device was printed on a Makeit Pro-M 3D printer (makeit-3d. 

com) using the MatterHackers PRO series, with black, PTEG, 

3D printing filament. It was designed to be used with an iPhone 

7 (Model Number MN8L2LL/A) to capture images. A Mastiff 

brand, A2, 3W, 380 nm, ultraviolet, LED flashlight was used as 

the UV light source (Hong Kong, China). Samples to be ana- 

lyzed were placed in a 2.5 mL disposable polystyrene cuvette 

(12.5 × 12.5 × 45 mm) with a cap. 

The capped cuvette containing the sample was slid into a 

chamber on top of the device. A separate cover was placed over 

the top of the cuvette to block out ambient light. The printed 

device positioned the UV flashlight directly below the cuvette 

to illuminate the sample. The device held the iPhone in place 

with the lens of the primary camera positioned parallel to a long 

side of the cuvette and in the approximate center from top to 

bottom and side to side. Once in place, the iPhone camera could 

view the illuminated cuvette through a circular hole in the cham- 

ber wall that held the cuvette. The cuvette was placed into the 

device to photograph a sample, covered with the cuvette cap, 

and illuminated with a UV flashlight. A standard photograph 

(not square) with no filters or effects was taken for each sample 

illuminated using the prototype hardware with a 380 nm LED 

light source. The fluorescence of each sample was photographed 

in duplicate to produce 1,647 images to train and test the model. 

Oil spill residues are complex and can occur in various 

forms, including sheens, tarballs, mousse, mats, and coating phys- 

ical or biological surfaces (NOAA Hazmat, 2016). This method 

aims to provide an initial support tool for screening suspected 

samples that trigger additional chemical analysis. Therefore, we 

developed a set of oil samples that target higher levels of crude 

oil in water for fluorescence detection. First, we created three 

series of oil samples to train or test the model ranging from 2 

to 500 mg/L. The low-range training series was composed of 

MC 252 from 0 ~ 200 mg/L in hexane in 2 mg/L increments with 

five replicates. Next, a high-range training series of 200 ~ 300 

mg/L in hexane was prepared in 5 mg/L increments with five 

replicates. Finally, to test the upper end of the model, we devel- 

oped a training series from 300 ~ 500 mg/L in 25 mg/L incre- 

ments with five replicates. Six repeated sample images as inde- 

pendent measurements were collected in each incremental con- 

centration level (2, 5, or 25 mg/L). During image collection, we 

minimized the influence of incidental sample cuvette reflec- 

tance by using different cuvettes for each independent measure- 

ment and measuring the sample twice with the same light source. 

The concentration level in our dataset thereby follows a nearly 

uniform distribution, which supports our model to estimate the 

concentration without handling imbalanced data. 

 

 
 

Figure 1. Data collection device: (a) 3D printed iPhone adaptor for image capture; (b) image of Macondo MC252 oil 

fluorescence. Photo by Ryan Gettler, USGS. 
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Figure 2. Calibration images of MC 252 crude oil in hexane at increasing concentrations from left to right. 

 

2.1.3. Data Preprocessing and Feature Analysis 

Figure 2 illustrates the relation between image intensity and 

crude oil concentration in our oil spill sample dataset (https:// 

github.com/minoriwww/waterquality). A clear trend of increas- 

ing brightness and intensity is due to the fluorescence emission 

observed as concentration increases. This trend is visible from 2 

to 50 mg/L; however, beyond 50 mg/L, the difference in image 

intensity becomes challenging to distinguish, consistent with re- 

sults from previous investigators using visual inspection to esti- 

mate oil concentrations (Russell et al., 2016). There are some 

image patterns, such as the cuvette on the sides of the image 

and the light source on the bottom of the image, but overall, the 

images have low contrasts. As a common practice, we reduced 

image resolution to 512 × 512 pixels for input into deep learning 

models, saving computing resources while maintaining the in- 

formation content. The red, green, and blue (RGB) channels 

were used to represent the color spectra. The 1,647 images in 

our dataset were split 80:20 into a training set and a test set: 

1,317 samples in the training set and 330 samples in the test 

set. The training sample images were augmented by horizontal 

flipping, shift, and distortion to reduce the variance of deep-

learning models during the training. 

 

2.2. Deep-Learning Model with Histogram Features 

The estimation of oil concentrations from images in the 

OilSS is different from most computer vision tasks because of 

the low contrast within an image and high similarity among im- 

ages. Unlike face recognition, OilSS images are flat, with most 

features hidden from visual inspection. The explicit features of 

OilSS images that human eyes can capture are merely color and 

slight color variations, which are insufficient to estimate the oil 

concentration. Inspired by histogram extraction in digital im- 

age processing, we analyzed the features in the spectral space 

(Clark et al., 2010) and color distributions. We added histogram 

features with location information for the deep-learning model 

(see Supporting Information). Part or whole histograms of a fig- 

ure were collected and used as extra histogram features on ma- 

chine learning models. Several deep learning models have adopt- 

ed such histogram features (Zhang et al., 2005; Gustafsson et 

al., 2019; Latif et al., 2019). 

Different combinations of histogram features were investi- 

gated in other studies, such as color channel histogram (calcu- 

lating histogram in RGB channels separately) and histogram of 

oriented gradient (HOG) (Rebetez et al., 2016; Nam and Kim, 

2017; Sedighi and Fridrich, 2017; Hussain et al., 2019). How- 

ever, these studies did not examine integrating the histogram 

extractor with our attention mechanism. In this work, we em- 

ployed a deep neural network and the attention mechanism to 

model histogram features from an input image and use the fea- 

tures in the prediction task. Attention mechanism is a technique 

that mimics cognitive attention. It can enhance some parts of 

the input data or features in a neural network layer while dimin- 

ishing other parts. This can help the model focus on the small 

but important part of the data by using a weighted combination 

of input vectors, with the most relevant vectors having the highest 

weights. The weights can be visualized to help interpret the 

model and learn using the training data. 

We assume the target (the concentration level in this case) 

can be determined by the input image, and the difference be- 

tween two input images is highly related to their differences in 

image features and histograms. To extract the histogram fea- 

ture, we devised a histogram pooling layer with attention, en- 

capsulated as a histogram attention block (HAB), and multiple 

HABs are further integrated as histogram bottleneck block (HBB) 

on the top of a lightweight ResNet50 (He et al., 2016). Histogram 

pooling extracts local histogram features by convolution filter, 

then combines them to obtain a histogram of the whole image. 

Compared with direct whole-image histogram calculation, the 

histogram pooling-based method converges faster, making the 

result more stable. Moreover, using the histogram pooling with 

the attention structure, the regional information (especially cor- 

ners and edges, as shown in Figure 4) is included in more detail. 

The residual network (ResNet) is a deep convolutional neural 

network with 50 residual layers, with a strong representation pow- 

er because of its deeper network. To study the network, we fol- 

lowed the notation in a network architecture report (Lathuilière 

et al., 2019): let CBi denote the ith convolutional block (also called 

ResBlock), GAP denote a global average pooling layer, and SM 

denote a soft-max layer. Therefore, Equation (1) can be used to 

describe the ResNet50 architecture. Equation (2) can be used 

to describe the model ResNet50 with 2 HBBs. Our overall net- 

work architecture is shown in Figure 3. 

 
1 2 3 4 5CB CB CB CB CB GAP SM− − − − − −  (1) 

 
1 1 2 2 3 4 5HBB CB HBB CB CB CB CB GAP SM− − − − − − − − (2) 
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Figure 3. Architecture of the deep learning model (a) including histogram bottleneck block (HBB, shown in the green box) and 

the histogram attention block (HAB, shown in red box). The detail of HAB in (a) is illustrated in (b). C, D, H, W denote channel, 

depth, height, and width, respectively. Other abbreviations are convolution (Conv), rectified linear unit (ReLU), pooling operation 

that selects the maximum value (Maxpooling), pooling operation that selects the average value (Avgpooling), width histogram 

(Whist), self-attention of the histogram (SelfAttnHist), and channel attention histogram (ChannelHistAttn). 

 

2.2.1. Histogram Attention Block (HAB) 

Each histogram-related block extracts the histogram infor- 

mation separately. The histogram attention block (HAB) adopts 

a histogram pooling layer called HistPool for histogram extrac- 

tion (Ghosh et al., 2015; Yin et al., 2016), as shown in Figure 

3(b). The extraction yields a 3D feature map with a size of Hhist 

× Whist × D, and then a two-branch dimension reduction is pro- 

cessed. The upper branch keeps the histogram with channel in- 

tegration, while the lower branch encloses the histogram infor- 

mation in each channel. These two branches are designed to 

catch different features and can be tested separately. 

Inspired by the principal component analysis (PCA) filter 

convolution of PCANet (Wu et al., 2017), HistPool adopts the 

regional maximum activation of convolutions (RMAC) pooling 

(Tolias et al., 2015) augmented histogram filter as an enhanced 

histogram extractor for the position information. Using random 

block sampling in the RMAC pooling, the receptive field is en- 

larged for more informative histogram features. The input fea- 

ture maps first pass through the HistPool, with an additional his- 

togram dimension as depth. Then, the resulting 3D feature maps 

attend themselves on channel and depth dimensions. The out- 

put of HAB has two output branches, as shown in Figure 3(b), 

one branch for WchannelHistAttn
l and the other branch for self-atten- 

tion of the histogram. The left will keep the origin channels, 

with the histogram dimension reduced by averaging, while the 

right one will reduce the original channel and the histogram di- 

mension. The HAB block before branching is represented as: 
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where GAPH,W
C,D

 is a 3D average pooling; C, D, H, W denote 

channel, depth, height, and width, respectively. 

The self-attention histogram SelfAttnHistl along depth di- 

mension is obtained by Equation (5). 

 

( )
C

l

ConvTrans

c

SelfAttnHist W HAB=   (5) 

 

where WConvTrans represents a learnable weight set of a transposed 

2D convolution layer as an upsampling operation on the chan- 

nel dimension, as shown in the right branch. The sum operation 

first squeezes (reduces) the channel dimension to 1, and then 

WConvTrans projects depth D (with bin size as its depth) into C, 

considered as a new channel. This channel squeeze-then-switch 

trick aims to align histogram feature depth to the input channel. 

The upsampling projects the depth dimension from the bin size 

to the input channel size, facilitating further combinations. 

 

2.2.2. Histogram Bottleneck Block (HBB) 

We investigated a pooling mechanism of RMAC (Tolias et 

al., 2015) for the filter convolution (Conv) on the feature map. 

Here the Conv kernel is substituted with a histogram operation 

kernel. Finally, we integrated and stacked the components, 

named histogram bottleneck block (HBB), inspired by the re- 

sidue design of bottleneck block ResBlock in ResNet (He et al., 

2016) and residual channel attention block (Zhang et al., 2018). 

HBB takes advantage of the recurrent structure and uses the 

previous layer’s output by the ResNet bottleneck block and 

HBB. 

Upon extracting histogram feature maps, our next step was 

to study the relations between the feature space and the original 

image space (Rebetez et al., 2016; Wang et al., 2016; Sedighi 

and Fridrich, 2017; Hussain et al., 2019). First, we examined the 

attention mechanism, which can fulfill the need of focusing fea- 

ture importance using feature interactions. The attention mech- 

anism selects and intensifies a focused location by its weight. 

It is naturally spatial, channel-wise, and multi-layer (Chen et 

al., 2017). The channel level attention and spatial level atten- 

tion generally have different focuses of an image or its features 

(Chen et al., 2017), and those attention heads can be stacked as 

blocks for tackling image super-resolution tasks (Zhang et al., 

2018). Based on studies of histogram features, we assume the 

filter with a histogram kernel can preserve spatial information 

(Ghosh et al., 2015; Yin et al., 2016). Inside HBB, a unit called 

histogram attention block (HAB) is proposed to exploit the his- 

togram information while preserving image relative spatial in- 

formation. The inner construction of HBB is shown in Figure 

3(a). 

Let CBi denote the ith convolution block, GAP denote a 

global average pooling layer, and SM denote a soft-max layer. 

According to the notation, the ResNet50 architecture can be de- 

scribed as follows: CB1 − CB2 − CB3 − CB4 − CB5 − GAP − SM 

(Lathuilière et al., 2019). An HBB in the lth layer harnesses the 

image and its histogram information, with residual learning via 

Equation (6). 

 

1[ ?

( 1)]

W
ll l

act channelHistAttn

l l

act

HBB f ResBlock

SelfAttnHist f HBB

−= 

+ −  (6) 

 

where fact represents non-linear transformation, such as ReLU, 

sigmoid, or max; ResBlockl−1 is the output of the (l − 1)th bottle- 

neck block of ResNet, with an element-wise sum  by SelfAttn- 

Histl, one of the HAB outputs; another output WchannelHistAttn
l is an 

attention weight for the input channel, determined by the atten- 

tion function of histogram itself, formulated as: 

 
1

1

( ( ( ))

(Re ))

W
l C l

channelHistAttn HW

l

Sigmoid GAP HAB ResBlock

HAB sBlock

−

−

= 

  (7) 

 

where the GAPHW
C denotes the 2D global average pooling func- 

tion along the height and width dimensions, aligning the chan- 

nel number to C. The  represents the mark of element-wise 

multiplication. Here, the input depends on the layer position of 

HBB. Every HBB block’s output passes through a Conv layer, 

a normalization layer, and an activation layer. All HBB blocks 

are concatenated before a fully connected layer, as shown in 

Figure 3(a). The Bottleneck blocks and histogram blocks are 

finally connected via block composition. The first HBB blocks 

HBB0 takes the original image as input and functions as a stan- 

dard block color histogram operation. 

 

2.3. Model Training and Fine-Tuning 

Our deep neural net model is trained by the ADAM opti- 

mizer (Kingma and Ba, 2014) with a learning rate set to 0.0001. 

We used PyTorch (Paszke et al., 2017) to implement our models 

with a Nvidia 1080Ti GPU. In addition to OilSS, we also ap- 

plied the CIFAR-10 dataset (Krizhevsky and Hinton, 2009) to 

test the generality of our models, which demonstrated accurate 

and robust performance. 

The input image is normalized and resized to 256 × 256 

with a batch sample size of 32. For the parameters of RMAC 

method in HAB, we tested the settings with a changeable size 

of convolution kernel from 2 × 2 to 7 × 7. Finally, 7 × 7 was 

selected by balancing the computational cost and accuracy. In 

each channel of the feature map, the histogram was generated 

using a bin size of 8 (i.e., every single 2D channel will be up- 

sampled by pooling the features to 3D with a depth of 8, whose 

granularity is sufficient for our dataset). Adaptive minimum and 

maximum limits of each channel were used in this pooling. The 

default up-sampling kernel size was 3 × 3 and the default con- 

volution kernel size was 5 × 5. Since the original parameter set- 

ting on ResNet with RMAC took a long time to converge, we 

optimized the process by trimming the image size and histo- 

gram bin number. 
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2.4. Confidence Interval Estimation 

Since predicting oil levels in water samples has uncertain- 

ties associated with sample quality and model accuracy, it is 

useful to show a confidence interval combined with a probabil- 

ity statement to express the degree of uncertainty instead of just 

a single value prediction. The actual value of a concentration 

level should fall into a defined interval within a stated probabil- 

ity. Such confidence interval estimations act as a better indica- 

tor to enhance the reliability and usability of the model. Further- 

more, the incorporation of uncertainty associated with oil con- 

centration measurement during a spill is essential to understand 

the limitations of the screening tool and resulting data when 

making decisions about a further evaluation or determining risk 

from exposure (Suter II, 2016). 

We further split all the training samples into the training 

subsets and the validation subsets on 5-fold cross-validation to 

investigate the confidence intervals. For real-world applications, 

we used a combination of the five models by taking the average 

of the five outputs. We employed a gradient boosting regressor 

(Nixon and Michel, 2015) to estimate a confidence interval con- 

ditional upon the error boundaries from the observation data, 

i.e., the predicted and actual oil concentrations of our 5-fold val- 

idation samples. The regressor assembled several individual de- 

cision trees in boosting the ensemble strategy to minimize the 

quantile loss function (Yu et al., 2003) as follows: 

 

( 1) ( )

( ) 0

quantile loss actual predicted

if actual predicted

= −  −

−   (8) 

 

where α is the quantile. In this work, we set α as the 90th quan- 

tile so that the loss function would drive the regressor to fit an 

error upper boundary with a 90% probability that the actual oil 

concentration level would fall below its prediction. While we 

also estimated another 10th quantile regressor to define the low- 

er error boundary with a 10% probability that the actual value 

would be above its prediction. Since the high oil concentration 

levels above 300 would be difficult to distinguish by humans 

and were not the model’s focus for practical purposes, we com- 

bined all high prediction values above 300 in the validation 

samples into one class for confidence assessment. Furthermore, 

to enhance the generalization of our confidence interval, we 

smoothed the fitting upper and lower curves as quadratic curves 

by further applying polynomial regression (Ostertagová, 2012). 

Eventually, we can send a prediction of any query sample to the 

pre-built confidence interval estimator and get its corresponding 

upper and lower limits to form the 90% confidence interval. 

This approach can be used to obtain other confidence interval 

levels based on the requirements of the analysis. 

3. Results and Discussion 

3.1. Overall Performance 

We tested various machine learning models, including lin- 

ear model, k-nearest neighbor (KNN) model, random forest 

model, ResNet50, and ResNet50 + HBB, as shown in Table 2. 

Among them, the ResNet50 model with two HBBs (ResNet- 

50 + HBB) performed the best for both regression and classify- 

cation, with a bin size of 10 mg/L for the oil content values. All 

the samples in each bin, e.g., 100 ~ 110 mg/L, will be given the 

same label. Hence, it is set as the default model in this study, 

with root mean square error (RMSE) as a metric. We also tested 

our model for classification on the CIFAR-10 dataset, a collec- 

tion of images widely used to train machine learning models 

and computer vision algorithms (Krizhevsky and Hinton, 2009). 

We observe that Resnet with HBB achieved higher accuracy than 

plain Resnet50, with R2 equal to 0.78 and 0.75, respectively. Since 

typical multi-class classification losses ignore the ordered infor- 

mation between the discrete labels, we develop an ordinal loss 

to learn our network parameters (Niu et al., 2016). The ordinal 

loss can improve the accuracy by 0.09. Both ResNet and Res- 

Net + HBB converge rapidly, while the HBB embedded model 

has higher accuracy. 

We also tested different networks’ performance with and 

without image generation as data augmentation. Table 2 shows 

that in both situations, with and without the generated input, 

our default model consistently achieves the best result with an 

RMSE of around 11 and prediction accuracy of approximately 

80% for the classification of the values in 10 bins. A possible rea- 

son for the success of our model may be the translational in- 

variance property of the inception block (Larsson et al., 2017), 

which helps reduce the variance by increasing the data flow path 

and filtering out the noises. 

 

Table 2. Comparison of Different Models in Different 

Configurations 

Metric&Tasks RMSE  

(Regression) 

Accuracy 

(Classification) 

Dataset OilSS-

color 

OilSS-

gray 

OilSS-

color 

OilSS-

gray 

Linear 15.89 15.89 0.12 0.15 

KNN 20.28 20.28 0.37 0.37 

Random Forest 32.52 32.28 0.48 0.47 

ResNet50 13.14 13.56 0.61 0.60 

ResNet50 + HBB 11.49 11.32 0.81 0.80 

ResNet50 (pretrain) 13.37 13.42 0.66 0.65 

ResNet50 (pretrain) 

+ HBB 

12.48 12.02 0.79 0.78 

 

3.2. Impact of Pretraining and Color Input 

Most image deep-learning models are pre-trained on a large 

dataset before training the model using the defined training set. 

Surprisingly, in our case, the pre-trained weights using Image- 

Net (http://image-net.org) weaken the model in converging time 

and performance, as shown in Table 2. Furthermore, pre-train- 

ing the model by ImageNet may mislead the model since the 

OilSS is dramatically different from the images in ImageNet 

with simple color and low contrasts. Therefore, the performance 

of our default model without pretraining outperforms the one 

with pretraining. We also tested whether color is the most im- 

portant feature of our data using OilSS-color with the original 

image’s color and OilSS-gray with its grayscale. As shown in 

Table 2, the color input can give more information to HBB so 

that the performance on OilSS-color is better. For other models, 

the result is close. 
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Classification accuracy is the percentage of predictions that 

fall into the correct ranges of 10 bins. All units are in mg/mL. 

Comparison is based on the root mean square error (RMSE) 

and accuracy classification is based on the models using the oil 

spill sample dataset (OilSS). Different models considered are 

linear, KNN (k-nearest neighbor), random forest, ResNet50 

(convolution neural network with 50 layers), and ResNet50 + 

HBB (histogram bottleneck block). 

 

3.3. Attention Mechanism 

We analyzed the middle layer of our model, as shown in 

Figure 4. The darker colors (green and blue) indicate that those 

regions played more important roles in the predictions. We can 

observe that the feature maps are able to tell the difference, which 

means our network captured useful features. Also, we analyzed 

some failed cases where the prediction concentration level di- 

verted significantly from the ground truth labels. In Figure 4(b), 

the model focuses on the corner of the input image, where the 

light source is positioned. It suggests a possibility of light leak- 

ing in the measurement for this sample. 
 

 
 

Figure 4. Feature maps that show the network values of the 

convolution (Conv) layers: (a) feature map of the 10th Conv 

layer; (b) feature map of the third-last Conv layer, which is a 

failed case. Each feature map shows the attention value of 

each neural network parameter in Conv layer. Yellow 

indicates light weights, and green or blue indicates heavy 

weights of the feature map. A heavier weight indicates more 

importance of the corresponding neural network parameter in 

the prediction model. 

 

3.4. Final Model Performance 

We conducted a 5-fold cross-validation for the final model 

(ResNet50 + HBB). We divided our data into six folds evenly. 

Five folds were used to perform the 5-fold cross-validation, and 

the last fold was reserved for testing the combined model of the 

five folds. Figure 5 shows the result of an example fold, indica- 

ting the model training converges well in its loss function. Fig- 

ure 6 and Table 3 show the validation results for each fold and 

the combined model. It can be seen that the performance varia- 

tions among the five folds are small. The combined model out- 

performs most folds (except fold 3). The combined model using 

more data is probably more robust; hence, it is expected to 

achieve better results in practice. 

 

 

Figure 5. An example (fold) of the 5-fold cross-validation 

result: (a) the loss curve of the training and validation, 

showing that the model gradually converges as the number of 

training steps increases; (b) training result; (c) validation 

result. Each dot in (b) and (c) represents one sample, showing 

the predicted value vs. ground-truth value (experimentally 

measured value) of oil concentration in mg/mL. Note the 

different y-axis in (b) and (c). 

 

 
 

Figure 6. Validation results for each fold and the 

combined model. 
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Table 3. Validation Performance of Each Fold and Combined 

Model 

Model RMSE MAE MAPE R2 

Fold 1 23.2 14.6 0.37 0.954 

Fold 2 35.5 16.8 0.42 0.895 

Fold 3 20.2 14.0 0.29 0.965 

Fold 4 27.5 15.8 0.38 0.935 

Fold 5 22.9 17.8 0.24 0.945 

Combined Model 20.5 12.3 0.39 0.962 

 

3.5. Confidence Interval Estimation 

We divided the validation data into several bins according 

to their predictions from our deep model. We then produced the 

boxplot as Figure 7(a) to display the distribution of their predic- 

tions using bins. It shows a few significant outliers. Next, we es- 

timated the error boundaries based on a gradient boosting re- 

gressor with 90th and 10th quantile loss functions, as shown in 

Figure 7(b). Finally, we further smoothed the boundaries by a 

polynomial regression as shown in Figure 7(c) and retrieved the 

confidence intervals for testing samples according to these bound- 

aries (Figure 7(d)). 

To evaluate the performance of the confidence interval es- 

timator, we measured the hit rate and average range of the pre- 

 

dictive interval. The hit rate is the percentage of ground truth 

falling into the predictive confidence intervals. The average range 

denotes the mean confidence intervals from all testing samples. 

The higher target rate indicates that our confidence interval es- 

timator is more precise, while the narrower confidence interval 

implies smaller uncertainty. In practice, we obtained their trade- 

off by setting the 90th quantile loss in a gradient boosting re- 

gressor and setting a two-degree polynomial in polynomial re- 

gression. The confidence intervals of our model achieved an 

80.06% hit rate and an average interval width of 37.62 on the 

testing samples. Thus, our users can be more than 80% certain 

that the actual concentration level of any testing sample lies in 

its predictive interval, which is useful for understanding the con- 

fidence of data generated using the model and limitations when 

making decisions about the oil level during a spill. 

4. Discussion 

This study demonstrates that using a cost-effective mobile 

device can perform useful scientific measurements. Similar 

methods have been developed for medical applications (Wei et 

al., 2013) but have not been significantly used in field measure- 

ments. For oil assessment, field-based technologies provide real- 

 

 
 

Figure 7. Confidence interval estimation: (a) boxplot of predictions of our deep architecture on validation samples (a combination 

of 5 validation results from the 5 corresponding models in the 5-fold cross-validation), where the box denotes the data of the first 

quartile (Q1) to the third quartile (Q3), the red line is the median, the bar represents the data in the range of [Q1– 1.5 × (Q3 – Q1), 

Q3 + 1.5 × (Q3 – Q1)], and the data out of the range are outliers; (b) error boundaries based on gradient boosting regressor of 90% 

quartile; (c) boundaries by a polynomial regressor of 90% quartile; (d) query confidence interval following the red arrows for a 

testing sample shown in the red circle. All units are in mg/L.
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time information but often use large devices deployed from ships 

or require more extensive power sources. While it is cheaper to 

use laboratory-based methods for oil assessment, it usually takes 

weeks to months to get results after collecting samples from the 

field. A cell phone device, as reported here, can fill a gap. Al- 

though the data quality cannot reach the measurements from 

state-of-art technologies, the results from our device are useful 

for practical purposes. The device is affordable for many to mon- 

itor the environment at large. Potentially, it can be used for cit- 

izen science. For example, high-school students may use the de- 

vice to monitor their neighboring open water pollution. 

The key novelty of this work is the application of deep learn- 

ing in mobile device-based oil assessment. We witnessed more 

and more applications of deep learning in many engineering ar- 

eas, but in each domain, it requires some special considerations 

to make the deep-learning application effective (LeCun et al., 

2015). In this case, the images are flat and have a low contrast, 

which are dramatically different from typical images like hu- 

man photos and natural scenes, where the mainstream deep learn- 

ing applies. Hence, we developed a new general framework to 

handle our images, which includes (1) using both the real space 

images and the histograms in the phase space; (2) applying an 

attention mechanism to enhance the performance and provide 

some model interpretability; (3) developing a confident assess- 

ment to give a confidence interval of the prediction result. This 

framework integrates the histogram bottleneck block and the his- 

togram attention block, and it may be used for other industrial 

measurements and engineering assessments, such as hydrologi- 

cal image analysis that previous studies addressed (Song, 2020; 

Li et al., 2022). 

A limitation of the approach described here is that a limit- 

ed clean image dataset (OilSS and CIFAR-10) was used to train 

the network. The model will be further tested using a broader 

range of petroleum hydrocarbon types with field-collected sam- 

ples with potential matrix interferences, enabling our model to 

be transferable to diverse field test cases. In addition, we are 

developing a mobile app for field use and data collection and 

further enhancing our model based on the new data. Another 

issue is that smartphones have built-in artificial intelligence to 

modify images (Morikawa et al., 2021). Although our deep-learn- 

ing framework can most handle this factor in the prediction, it 

adds some complexity that may reduce the robustness of the 

prediction. Hence, we are building new hardware independent 

of mobile devices, with fixed fluorescence light and camera 

lens. This also allows fluorescence images of water samples to 

be collected and transmitted to a wide range of mobile devices, 

such as Android phones, iPad, etc., improving usability. Future 

efforts to develop the model for application in the field should 

include demonstration and use by the oil spill community in 

real-world applications. Our goal is to make the device and the 

mobile app widely used in the oil spill responder community. 

5. Conclusions 

This paper formulated the oil spill estimation task, built a 

standard image dataset (OilSS), and proposed a histogram fea-

ture enhanced model based on a novel deep learning model. We 

designed HBB to enclose learnable weights for the attention 

mechanism by HAB on both histogram features and image’s 

spatial features. In addition, a confidence interval-based metric 

has been applied to assess the model performance for estimat-

ing oil concentrations. Our model outperforms several other mod- 

els, including ResNet-50, while keeping the running time low. 

The model shows an excellent overall accuracy performance 

and a reliable confidence assessment, especially in the most rel- 

evant range, i.e., 50 ~ 300 mg/L. When the oil content level is 

very high or very low, the prediction accuracy is relatively low. 

Still, the qualitative prediction (whether below the threshold of 

50 mg/L or above the threshold of 300 mg/L) is reliable. Hence, 

our model is ready for practical applications as a screening tool. 

Our approach can also apply to analyze other images with nar- 

row color spectra and low contrasts. 
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