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ABSTRACT. The chlorophyll-a (Chl-a) concentration is commonly considered as the main indicator of phytoplankton biomass in coastal 

waters. Forecasting and understanding the status of Chl-a is beneficial to coastal ecosystem management and is an important emergency 

management measure for algae blooms. To obtain accurate predictions, the long short-term memory neural network (LSTM) and gated 

recurrent unit neural network (GRU) were implemented for Chl-a forecasting, and based on the LSTM and GRU units, two simplified 

attention-based encoder-decoder recurrent neural network (AEDRNN) models were also developed for time series predictions. The per-

formance of the proposed models was compared with that of the auto-regressive integrated moving average (ARIMA), multilayer per-

ceptron (MLP) and Elman recurrent neural network (ERNN) models by experimentally generating multi-step-ahead predictions using a 

dataset in the Zhejiang coastal areas of China. The results demonstrated that the LSTM, GRU and AEDRNN models significantly outper-

formed the ARIMA, MLP and ERNN models according to multiple statistical indicators. Moreover, the AEDRNN models were superior 

to the LSTM and GRU models, especially for middle-term predictions. In addition, the AEDRNN model with LSTM units was more 

robust than the AEDRNN model with GRU units in terms of accuracy and stability; therefore, it was considered to be the best model for 

Chl-a forecasting. 

 

Keywords: attention-based encoder-decoder recurrent neural network, algal blooms, chlorophyll-a, gated recurrent unit neural network, 
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1. Introduction 

Algal blooms and eutrophication in estuaries and coastal 

areas have caused considerable damage to the usage of coastal 

resources and become serious water quality issues worldwide 

(Chen et al., 2015; Rajaee and Boroumand, 2015). The chloro- 

phyll-a (Chl-a) concentration is commonly regarded as the main 

measurement of phytoplankton biomass, and is used to evaluate 

the trophic status and infer algal blooms of coastal waters (Samli 

et al., 2014; Wang et al., 2015).  

Forecasting and understanding the status of phytoplank- 

ton biomass (Chl-a) is considered to be highly useful for coastal 

ecosystem management and algae bloom early warning. In recent 

decades, many studies have been conducted to develop and 

improve time series forecast models. Numerous models have 

been applied to the prediction of Chl-a and other water quality 

parameters to facilitate the development of management strate-

gies for estuarine and coastal waters. 

One of the most fundamental prediction models is the auto- 

regressive integrated moving average (ARIMA) model (Box 

and Jenkins, 1976). ARIMA and its variants (e.g., SARIMA and 

ARIMAX) have been widely applied to water quality forecast-

ing in estuaries and coastal areas (Ahmad et al., 2001; Nicholls, 

2012; Photphanloet et al., 2016). However, these models have 

unstable accuracy due to their linear representation of the non-

linear system (Zhang, 2003), such as the behaviours of algae 

blooms in nutrient-enriched water bodies, which involve the 

nonlinear physical, chemical, and biological processes (Wang 

et al., 2015). 

Recently, feed-forward neural networks (FNNs) have achiev-

ed great success in algal blooms (Chl-a) prediction (Lee et al., 

2003; Melesse et al., 2008; Samli et al., 2014; Wang et al., 2016). 

Although FNNs exhibit better performance than traditional lin-

ear models for the complexity of ecological phenomena, they 

present difficulties in modelling temporally dynamic systems 

because of their hierarchical network structures. To resolve this 

problem, recurrent neural networks (RNNs) that integrate a state-

ful memory mechanism into FNNs were introduced, and can be 

trained to learn time-varying patterns and thus are generally more 

powerful than FNNs for modelling complicated dynamic sys-

tems (Brunelli et al., 2006; Harada et al., 2013; Wang et al., 2015; 

Le et al., 2017). 
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However, traditional RNNs suffering from the vanishing 

or exploding gradient problem are unable to learn long time de-

pendencies (Hochreiter and Schmidhuber, 1997; Gers, 2001). To 

address this shortcoming, the long short-term memory (LSTM) 

RNN with input and output gates was proposed by Hochreiter 

and Schmidhuber. (1997) and improved with the forget gate by 

Gers. (2001). The LSTM model is well-known for its excellent 

ability to memorize long-term dependencies and has achieved 

great success for time-series predictions in various fields (Mak-

nickas, 2012; Ma et al., 2015; Bao et al., 2017; Fu et al., 2017). 

Moreover, a simplified variant of the LSTM architecture called 

the gated recurrent unit (GRU) neural network was also proposed 

to accelerate training (Cho et al., 2014). Many studies have shown 

that the performance of the GRU model is better than tradition-

al RNNs, and is comparable to LSTM (Cho et al., 2014; Ravuri 

and Stolcke, 2016; Fan et al., 2017). 

The features that memorize long-term dependencies of the 

LSTM and GRU models are also desirable for conducting time-

series prediction in the coastal environmental domain. Howev-

er, the LSTM and GRU models are rarely applied to modelling 

the environmental dynamic processes in coastal areas, and their 

availability for Chl-a prediction needs to be further studied. 

In addition, a new class of recurrent architecture based upon 

LSTM or GRU units, namely, encoder-decoder recurrent neural 

network (EDRNN) (Cho et al., 2014; Sutskever et al., 2014), has 

attracted a great deal of attention and has become popular due 

to its recent success in machine translation. Since the perfor-

mance of the basic EDRNN declines rapidly as the input sen-

tence becomes longer, an attention-based encoder-decoder re-

current neural network (AEDRNN) that employs an attention 

mechanism was proposed by Bahdanau et al. (2014), and their 

results showed that the AEDRNN significantly outperformed the 

conventional EDRNN in machine translation. Consequently, the 

state-of-the-art AEDRNN method is naturally considered for 

time series predictions, and a few studies have shown that the 

performance of the AEDRNN was superior to that of other 

RNNs and FNNs (Zaytar and El Amrani, 2016; Cinar et al., 

2017; Qin et al., 2017). 

To our knowledge, the applicability of the AEDRNN model 

in forecasting coastal environmental processes has not been in-

vestigated. Therefore, the purpose of this paper is to examine 

the capabilities of the LSTM, GRU and AEDRNN models for 

Chl-a predictions in coastal areas, and the main contributions 

include the (1) introduction of robust RNN models to address 

the long-term temporal dependencies of Chl-a prediction in 

coastal areas; (2) development of two simplified AEDRNN mod-

els based on the LSTM and GRU units for time-series forecast-

ing of Chl-a; (3) comparative investigation to estimate the ap-

plicability of the LSTM, GRU and AEDRNN models and pro-

vision of a general guideline for choosing suitable RNN models 

for Chl-a predictions. 

The structure of this paper is as follows. The descriptions 

and architectures of the prediction models are presented in Sec-

tion 2. The study area and data analysis are introduced in Sec-

tion 3. The implementation of the models applied for Chl-a pre-

dictions are shown in Section 4. The experimental results and 

discussions of these models are provided to evaluate the perfor-

mance in Section 5. The conclusions are given in the last section. 

2. Methods 

In this study, univariate time series predictions of Chl-a are 

the main concern. Based on the discussion in Section 1, the time 

series prediction models mainly fall into two categories: linear 

and nonlinear models. Regarding the nonlinear models, we fo-

cus on the artificial neural network (ANN) models, which can 

be simply divided into FNNs and RNNs. To evaluate the per-

formance of the LSTM, GRU and AEDRNN models, the ARIMA 

and multilayer perceptron (MLP) are selected as representa-

tives of linear models and FNNs, respectively, and the Elman 

RNN (ERNN) is chosen as the baseline RNN model. 

 

2.1. ARIMA Model 

In an ARIMA model, a variable’s predicted value is con- 

sidered a linear combination of historical values plus error terms, 

and it mainly includes three parts: auto-regression (AR), inte-

gration (I), and moving average (MA). Therefore, this model 

can be presented as the ARIMA (p, d, q), where p, d, and q are 

the numbers of the AR terms, difference terms, and MA terms, 

respectively. For example, ARIMA (p, 0, q) represents a time 

series depending on p past observations and q past random 

terms. The form of this model is as follows: 

 

1 1 2 2 1 1 2 2...t t t p t p t t ty c y y y       − − − − −= + + + + + − −  

  ... q t q  −− −  (1) 

 
where yt and εt represent the true value and random error at time 

t. The random error is considered to be identically and indepen-

dently distributed. In addition, βi, θi and c are parameters that 

need to be estimated. 

 

2.2. Multilayer Perceptron 

The MLP is employed as the representative FNN in this 

paper. The three-layer feed-forward MLP that includes one hid-

den layer along with an input layer and an output layer is the 

most commonly used structure (Faruk, 2010; Samli et al., 2014). 

A schematic diagram of the MLP used in this study is given in 

Figure 1(a), where Xi (i = 1, 2, …, t) are the input variables, 

such as the temporal sequence of Chl-a in our case; Hi (i = 1, 

2, …, s) denotes the hidden layer’s outputs; and Yt+1 represents 

the predicted value. Here, MLP is used to predict the next mo-

ment of the preceding temporal sequence so that only one neu-

ron is needed in the output layer. 

 

2.3. Elman RNN 

The ERNN proposed by Elman (1990) is used as the base-

line RNN model in this study. The fundamental structure of the 

ERNN is illustrated in Figure 1(b). In this network, the hidden 

layer’s outputs are permitted to be fed back through a context 

layer. Each neuron of the hidden layer connects to one neuron 
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in the context layer with a constant weight. Accordingly, the 

context layer contains a copy of the hidden layer’s states one 

instant before. Commonly, hidden neurons utilize nonlinear ac-

tivation functions, such as sigmoid and tanh formulas, whereas 

input, output and context neurons employ linear transfer functions. 

 

 
 

Figure 1. Network structures of the (a) MLP and  

(b) ERNN models. 

2.4. LSTM and GRU RNNs 

2.4.1. Long Short-Term Memory RNN 

The LSTM that usually consists of one recurrent hidden 

layer along with an input layer and an output layer, was first 

presented by Hochreiter and Schmidhuber (1997). Unlike in 

conventional RNNs, its hidden layer's basic unit is a memory 

block for memorizing the temporal state. In the block, the input 

gate and output gate are used to determine the input and output, 

and the forget gate is to enable it to reset. In addition, peephole 

connections from the memory cell to the gates are created to 

filter the unwanted inputs or errors. The architecture is visual-

ized in Figure 2(a). 

The model input is displayed as X = (X1, X2, …, Xt), and 

the output series is presented as y = (y2, y3, …, yt+1), where t is 

the forecast period. In the case of Chl-a predictions, X is con- 

sidered the historical data and y is the estimated Chl-a. To fore-

cast the next moment’s Chl-a, the prediction is iteratively cal-

culated by equations (2) ~ (8): 

 

 
 

Figure 2. Network structures of the (a) LSTM and (b) GRU. 

 

 ( , , )
1 1tX − −=  +

t f t t f
f W h C b  (2) 

 

 ( , , )
1 1i tg X − −=  +

t t t i
i W h C b  (3) 

 

 ( , )
1t tg X −=  +

c t c
C W h b  (4) 

 

1−=  + t t t t tC f C i C  (5) 

 

 ( , , )
1tX −=  +

t o t t o
o W h C b  (6) 

 

( )g= t t th o C  (7) 

 

( )ty g=  +y t yW h b  (8) 

 

where ft, it and ot are the outputs of different gates, 𝑪�̃� is the 

new cell state of the memory unit, Ct is the final cell state of the 

memory unit, ht is the output hidden state of the memory unit; 

W* and b* are weight matrices and bias vectors, respectively; 

σ(∙) is the sigmoid function, and its range is [0, 1]; and g(∙) is 

the tanh function, and its range is [–1, 1]. The truncated back 

propagation through time (BPTT) and real time recurrent learn-

ing (RTRL) algorithms are applied to train the LSTM model 

through the gradient descent optimization method (Gers, 2001). 

 

2.4.2. Gated Recurrent Unit RNN 

The GRU neural network was presented by Cho et al. (2014), 

and it is similar to the LSTM but simpler to calculate and imple-

ment. The typical structure of GRU cells is shown in Figure 2(b). 

A typical GRU cell consists of two gates: the reset gate rt and 

update gate zt. Similar to the LSTM cell, the hidden state output 

ht and final prediction yt at time t are computed using the hidden 

state of time t–1 and the input time series value at time t, which 

are presented in equations (9) ~ (13): 

 

 ( , )
1tX −=  +

t z t z
z W h b  (9) 

 

 ( , )
1tX −=  +

t r t r
r W h b  (10) 

 

 ( , )
1tg X −=   +

t h t t h
h W h r b  (11) 
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(1 )1−=  +  −t t t t th h z h z  (12) 

 

( )ty g=  +y t yW h b  (13) 

 

where the meanings of W*, b*, σ(∙), and g(∙) are the same as the 

LSTM formulas. 

 

2.5. Attention-Based Encoder-Decoder RNN 

The AEDRNN consists of three components: one is used 

to encode the input called encoder, one is to generate the out- 

put known as decoder, and the last one is used to denote the at-

tention mechanism, which provides information from the inputs 

to generate output elements (Figure 3).  

 

 
 

Figure 3. Network structures of the AEDRNN. 

 

The encoder is essentially an RNN model that encodes the 

input sentences into feature vectors in machine translation. For 

time series predictions, given an input sequence X = (X1, X2, …, 

Xt), the encoder is employed to produce the mapping from Xt to 

[eCt, eht] as follows: 
 

   _, ( , , )
1 1encoder cell tf X− −=

t t t t
eC eh eC eh  (14) 

 

where [eCt, eht] is the state of the encoder at time step t and 

fencoder_cell is a nonlinear transformation that depends on the con-

sidered RNN. In this paper, we examine the LSTM and GRU 

by using fencoder_cell. In machine translation modelling, Bahdanau 

et al. (2014) refined fencoder_cell into bidirectional RNNs because 

the annotation of each word is related to both the preceding 

words and the following words. Since a time series prediction is 

generally regarded as a unidirectional process, a forward-direc-

tional RNN is adopted to capture the long-term dependencies. 

To forecast the sequence output {yT, yT+1, …, yS}, another 

recurrent neural network is used to decode the encoded infor-

mation. However, the encoder-decoder network’s performance 

deteriorates quickly when the input sequence becomes longer. 

Therefore, a temporal attention mechanism is adopted after the 

encoder to adaptively choose relevant encoded hidden states. 

To be specific, the attention weight aT, j of each encoder hidden 

state ehj at time T is calculated by the previous decoder states 

[dCT–1, dhT–1] and ehj as follows: 

 

 ( , )
1 1attention jf − −=  +  +

T, j β T T β β
β W dC dh U eh b  (15) 

 

1

exp( ) / exp( )
t

k=

= T, j T, j T,kα β β  (16) 

 

where Wβ, Uβ and bβ are the parameters to be learned; fattention is 

a nonlinear attention function, and the tanh function is applied. 

Then, the context vector AT is calculated as a weighted sum of 

all the encoder hidden states {eh1, eh2, …, eht}: 

 

1

t

j=

= T T, j jA α eh  (17) 

 

The context vector AT of each time step is distinct. After 

obtaining this vector, we simplify the model of Bahdanau et al. 

(2014) by using [dCT–1, dhT–1] and AT to compute the decoder 

states: 
 

   _, ( , , )
1 1decoder cellf − −=

T T T T T
dC dh dC dh A  (18) 

 

According to our experience, this simplification is benefit-

cial for enhancing computational efficiency without degrading 

performance. The form of the nonlinear transformation fdecoder_cell 

is the same as fencoder_cell. 

Finally, a simplified AEDRNN architecture is developed, 

and the current output yT is estimated as follows: 
 

( )T yy g b=  +y TW dh  (19) 

 

where Wy and by are the weighted matrix and bias term, respect-

tively, and g(∙) denotes the tanh function. In addition, because 

the GRU combines the states [dCT, dhT] into one hidden state 

dhT, the states [dCT, dhT] in equations (14) ~ (18) should be re-

placed by dhT when using GRU cells. 

 

2.6. Model Evaluation 

The performance of the models is assessed using the fol- 

lowing metrics: coefficient of determination (R2), which mea-

sures the variability of the predicted data; and the mean abso-

lute percentage error (MAPE) and root mean square error (RMSE), 

which estimate residual errors. The indicators are presented as 

equations (20) ~ (22): 
 

2 2 2

1 1

1 ( ) / ( )
N N

oi pi oi o

i i

R y y y y
= =

= − − −   (20) 

 

1

1/ / 100%
N

oi pi oi

i

MAPE N y y y
=

=  −   (21) 
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2

1

( ) /
N

oi pi

i

RMSE y y N
=

= −  (22) 

 

where yo and yp are the observed and predicted values, �̅�𝑜 
is the mean of the observations, and N is the total count. 

3. Study Area and Dataset 

3.1. Study Area 

The northern coastal area of Zhejiang Province situated in 

the East China Sea is chosen as the research area (Figure 4). This 

region experiences frequent human impacts and is the largest 

fishery of China. In recent decades, owing to the booming off-

shore shipping industry, this area has obtained considerable 

economic advantages. In addition, this area is located near the 

estuaries of the Qiangtang River and Yangtze River, which in-

creases the complexity of the ecosystem. The high population 

density and economic activity have led to serious eutrophica-

tion in the region (Zhang et al., 2017a). Because of the highly 

complex and nonlinear characteristics of the marine ecological 

environment, addressing the eutrophication and algal blooms in 

the study area is urgent and challenging. 

 

3.2. Dataset 

Supported by the Zhejiang ocean projects, the Zhejiang 

Province Ocean and Fishery Bureau (ZJOFB) launched two 

water quality buoys, ZS01 and NB01, in the Zhoushan and 

Ningbo sea areas in 2014 (Figure 4). The two buoys can auto-

matically monitor the water quality parameters with a one-hour 

frequency. The monitored parameters include the pH, salinity, 

dissolved oxygen, Chl-a, etc. Hourly data of the Chl-a concen-

trations collected by ZS01 and NB01 covering the period from 

January 1, 2015 to August 31, 2017 were selected as the exper-

imental dataset.  

The monitoring of Chl-a in Zhejiang coastal waters is quite 

difficult due to the high turbidity characteristics of coastal areas 

and the instability of data transmission. Therefore, abnormal data 

and missing data are occasionally received. Considering the high 

frequency (i.e., 1 hour) of data acquisition, a time-based linear 

interpolation was utilized to supplement the data, which was tes-

tified to be effective in practical applications. In addition, be-

cause of the uncertainty of the monitoring sensors in the buoys, 

the data quality was not completely reliable. Therefore, the origi-

nal hourly data were averaged to the frequency of 12 hours to 

improve the data reliability. Subsequently, a total count of 1948 

half-daily observations for each buoy was achieved, and these 

data were separated into training, validation and testing subsets. 

The first 1,460 (75%) and middle 300 (15%) data records were 

employed for training and validation, and the remaining 188 

(10%) data records were utilized to test the models (Figure 5). 

Particularly, for the ARIMA model, the validation data were com-

bined into training data.  

 

 

Figure 4. Study area and the locations of buoys ZS01 and NB01. 



S. S. Wu et al. / Journal of Environmental Informatics 41(2) 104-117 (2023) 

109 

 
 

Figure 5. Temporal variations of the datasets at buoys (a) ZS01 and (b) NB01.  

 

Table 1. Statistical Analysis Results for the Training, Validation, and Testing Data and All Datasets 

Statistics 

ZS01  NB01 

All Train Validation Test  All Train Validation Test 

Mean 1.07 1.04 1.08 1.26  1.57 1.24 2.06 3.36 

Std. 0.46 0.42 0.16 0.84  2.05 1.02 2.81 4.30 

Min 0.46 0.46 0.62 0.54  0.18 0.18 0.54 0.86 

Max 5.20 5.20 1.44 4.82  31.83 11.98 21.53 31.83 

Count 1,948 1,460 300 188  1,948 1,460 300 188 

R1 0.90 0.95 0.82 0.80  0.91 0.95 0.91 0.87 

R4 0.66 0.77 0.48 0.43  0.43 0.61 0.49 0.18 

R8 0.49 0.63 0.15 0.20  0.25 0.34 0.25 0.02 

R16 0.32 0.44 –0.11 0.04  0.13 0.11 0.03 –0.02 

 

Table 1 presents the statistical analysis results of the train-

ing, validation, testing and whole Chl-a data. For each parame-

ter, the mean, standard deviation (Std.), minimum, maximum, 

count, and autocorrelation coefficients of lags 1, 4, 8, and 16 

(R1, R4, R8, and R16) were calculated. In addition, the dataset 

was normalized to the range [–1, 1] in the experiments. 

The temporal variations of the dataset are displayed in Fig-

ure 5. Due to the influence of coastal algal blooms, the Chl-a 

concentrations of both buoys showed several sudden rises and 

formed mutation peaks during the period from May to Septem-

ber each year.  

4. Experiment Modelling 

To better indicate and forewarn the algal blooms, multi-

step-ahead predictions of Chl-a are preferable. In contrast to 

one-step-ahead time series forecasts, multi-step-ahead predic- 

tions are generally subjected to growing uncertainty from the 

error accumulation. For a better comparison of the models, multi-

step-ahead predictions of Chl-a were conducted. Since the sudden 

increase of Chl-a was rapid and generally occurred within four 

days, as shown in Figure 5, this article attempted to predict the 

Chl-a for the next 4 days based on the previous sequence, i.e., 

eight-step forward predictions. 

 
Table 2. Optimal Parameters and AIC Values of the  

ARIMA models 

ARIMA p d q AIC 

ZS01 25 0 0 2,741.95 

NB01 15 0 0 7,970.88 

 
4.1. ARIMA Modelling 

To fit the available Chl-a data with the ARIMA model, the 

autocorrelation functions and partial autocorrelation functions 

were utilized to determine the possible structures. The best fitted 

model among the many competing models was selected based 

on the Akaike information criterion (AIC). As shown in Table 

2, the components (p, d, q) of the best ARIMA model were (25, 

0, 0) and (15, 0, 0) for datasets ZS01 and NB01, respectively. The
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optimum AICs were 2,741.95 and 7,970.88. 

 

4.2. ANN Modelling 

Based on the experimental data, six ANN models, i.e., the 

MLP, ERNN, GRU, LSTM, attention-based encoder-decoder 

GRU (AEDGRU), and attention-based encoder-decoder LSTM 

(AEDLSTM), were implemented in Keras 2.0.4 with the Ten-

sorFlow 1.1.0 backend using Python language. 

A three-layer MLP model, one of the most common ANN 

architectures, was developed to predict Chl-a using a back-prop-

agation algorithm. The one single hidden layer network struc-

ture of the RNN models has also been demonstrated to be ef-

fective in various prediction researches (Brunelli et al., 2006; 

Ma et al., 2015; Tian and Pan, 2015; Zhang et al., 2017b). There-

fore, the three-layer architecture was also employed to build the 

ERNN, LSTM and GRU models. Because the AED LSTM and 

AEDGRU contained encoder and decoder RNNs, they had two 

hidden layers. Since the dataset was normalized to the range 

[–1, 1], the tanh activation function was utilized in the hidden 

layer of the MLP and ERNN models. The activation functions 

of the LSTM and GRU units were sigmoid and tanh functions, 

and additional details are provided in Section 2.4. 

The sum of square errors was adopted as the loss function

and used to search the optimal model. The Adam (Kingma and 

Ba, 2014) algorithm was employed to train each model with a 

mini-batch of 100 sequences. The maximum number of training 

epochs was set to 5,000, and the validation dataset was fitted 

after each epoch to prevent over-fitting. 

The neurons of the output layers of the MLP, ERNN, LSTM 

and GRU models were set to 1 so that the multi-step-ahead pre-

dictions of these models were obtained by an iterative forecast 

process. Because the outputs of the decoder of the AEDRNN 

models can be regarded as the subsequent serial predictions, 

the multi-step-ahead predictions were straightforward for the 

AEDRNN models by setting the neuron size of the output layer. 

Accordingly, the output layer’s neuron size of the AEDLSTM 

and AEDGRU models were set to 8. 

Determining the optimal sizes of the neurons in the input 

and hidden layers are frequently difficult; thus, a simple search 

strategy was conducted in this study. The optimal neuron size of 

input layer for each model, i.e., the size of the input time se-

quence, was selected from the list of [10, 20, 30, 40, 50, 60, 70, 

80, 100, 150], and the neuron size of the hidden layer was op-

timized from the list of [3, 6, 12, 24, 48, 96, 192]. The neuron 

sizes of the encoder and decoder of the AEDRNN models were 

set to the same size. 

 

Table 3. Optimum Architectures of the MLP, ERNN, GRU, LSTM, AEDGRU and AEDLSTM Models for the ZS01 and NB01 

Datasets 

Model 

ZS01  NB01 

Input Hidden Output  Input Hidden Output 

MLP 30 24 1  60 48 1 

ERNN 60 24 1  60 48 1 

GRU 60 48 1  60 48 1 

LSTM 60 48 1  60 48 1 

AEDGRU 60 [48, 48] 8  60 [48, 48] 8 

AEDLSTM 60 [48, 48] 8  60 [48, 48] 8 

 
Table 4. Multi-Step-Ahead Prediction Results of the ZS01 Testing Dataset 

ZS01 
Step 1 (12 h)  Step 2 (24 h)  Step 3 (36 h)  Step 4 (48 h) 

RMSE R2 MAPE  RMSE R2 MAPE  RMSE R2 MAPE  RMSE R2 MAPE 

ARIMA 0.52 0.64 14.61  0.69 0.42 21.42  0.77 0.30 27.21  0.83 0.23 29.21 

MLP 0.43 0.75 14.56  0.52 0.64 19.99  0.61 0.52 25.39  0.67 0.45 29.95 

ERNN 0.41 0.78 11.67  0.53 0.63 16.49  0.56 0.58 18.25  0.58 0.55 18.60 

GRU 0.31 0.87 11.48  0.38 0.80 15.34  0.40 0.79 17.11  0.44 0.73 20.23 

LSTM 0.30 0.88 11.83  0.38 0.80 15.50  0.43 0.74 18.46  0.48 0.69 20.85 

AEDGRU 0.26 0.91 9.40  0.31 0.88 11.82  0.33 0.86 13.42  0.39 0.80 16.88 

AEDLSTM 0.29 0.88 10.70  0.37 0.82 13.83  0.40 0.78 16.80  0.43 0.77 17.76 

 Step 5 (60 h)  Step 6 (72 h)  Step 7 (84 h)  Step 8 (96 h) 

ARIMA 0.86 0.18 30.81  0.91 0.13 34.89  0.95 0.09 37.08  0.97 0.06 38.06 

MLP 0.69 0.43 33.08  0.75 0.36 37.03  0.79 0.31 39.51  0.83 0.28 41.83 

ERNN 0.58 0.55 19.73  0.59 0.55 25.51  0.61 0.52 28.80  0.63 0.50 29.64 

GRU 0.45 0.72 21.90  0.47 0.69 24.26  0.56 0.57 29.92  0.61 0.50 33.58 

LSTM 0.52 0.62 22.66  0.55 0.58 24.58  0.60 0.49 27.01  0.63 0.45 29.38 

AEDGRU 0.44 0.74 20.18  0.48 0.68 22.91  0.49 0.67 23.72  0.50 0.67 25.03 

AEDLSTM 0.42 0.82 17.94  0.45 0.76 20.52  0.44 0.79 19.84  0.47 0.75 21.14 

Note that the model with the best capability was marked in bold with a light orange background, and the one with the second-best performance was 

marked in italics with a light grey background. 
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Table 5. Multi-Step-Ahead Prediction Results of the NB01 Testing Dataset 

NB01 
Step 1 (12 h)  Step 2 (24 h)  Step 3 (36 h)  Step 4 (48 h) 

RMSE R2 MAPE  RMSE R2 MAPE  RMSE R2 MAPE  RMSE R2 MAPE 

ARIMA 2.31 0.76 19.03  3.58 0.46 25.88  4.28 0.23 38.10  4.75 0.11 49.60 

MLP 1.60 0.88 22.26  2.78 0.62 33.87  3.45 0.43 45.07  4.03 0.25 54.32 

ERNN 1.42 0.89 16.60  2.68 0.65 27.02  3.78 0.39 42.06  5.03 0.18 60.07 

GRU 1.00 0.95 9.35  1.63 0.86 15.39  2.07 0.78 22.39  2.47 0.68 29.34 

LSTM 1.05 0.94 11.25  1.75 0.85 15.98  2.15 0.79 21.41  2.49 0.73 26.39 

AEDGRU 1.41 0.90 13.38  2.02 0.79 18.69  2.26 0.74 23.79  2.50 0.69 30.89 

AEDLSTM 1.14 0.94 12.02  1.68 0.89 16.85  1.92 0.87 20.64  2.14 0.83 24.88 

 Step 5 (60 h)  Step 6 (72 h)  Step 7 (84 h)  Step 8 (96 h) 

ARIMA 5.05 0.04 63.19  5.15 0.01 72.35  5.15 0.00 78.97  5.13 0.00 78.60 

MLP 4.43 0.14 62.47  4.70 0.08 69.51  4.79 0.06 70.26  4.75 0.05 67.11 

ERNN 5.86 0.08 84.41  6.37 0.04 106.99  6.97 0.01 131.85  7.64 0.00 155.52 

GRU 2.78 0.60 36.75  3.03 0.52 44.08  3.25 0.45 49.69  3.44 0.39 52.66 

LSTM 2.74 0.69 31.74  2.92 0.67 36.37  3.05 0.67 38.95  3.17 0.67 39.60 

AEDGRU 2.59 0.69 31.02  2.65 0.69 33.57  2.55 0.76 32.23  2.62 0.73 33.21 

AEDLSTM 2.25 0.84 27.68  2.31 0.86 30.50  2.35 0.85 32.02  2.38 0.89 30.99 

Note that the model with the best capability was marked in bold with a light orange background, and the one with the second-best performance was 

marked in italics with a light grey background. 

 

Therefore, 70 models were developed for each model and 

compared using the two statistical measures R2 and RMSE. The 

optimum architectures of the six ANN models for the datasets 

of ZS01 and NB01 are reported in Table 3. 

Through simple sensitivity analysis, the capacities and im-

pacts of different neural network structures on the final predic-

tion results can be learned. For various input neuron sizes, we 

found that the optimal neuron size of input layer was 60 for al-

most all models except the MLP model of ZS01 as shown in 

Table 3. In other words, the best input temporal sequence of 

Chl-a prediction for both ZS01 and NB01 was mainly 60 / 2 = 

30 days, which demonstrated that the temporal correlation period 

of Chl-a that can be efficiently fitted was about 30 days in our 

study area. Moreover, with regard to the selection of hidden neu-

ron size, when the neuron size of the hidden layer gradually in-

creased to the optimal size (i.e., the MLP and ERNN models of 

ZS01 were 24, and the other models were 48), the model per-

formance of both training and validation datasets kept rising, 

which indicated that the models were still under-fitting, but when 

the neuron size continued to increase and exceeded the optimal 

size, the model performance of the training dataset probably still 

heightened slightly while that of the validation dataset rapidly 

dropped, showing that the models began to overfit. 

The difference between the Spearman correlation from 

NLR and that from LR in Figure 5 again has the dash and dot-

dash lines lying above the horizontal axis in (b) indicating NLR 

generally outperforming LR for non-outliers, and lying below 

the horizontal axis in (a) indicating NLR generally underper-

forming LR for outliers.  

5. Results and Discussion 

Tables 4 and 5 demonstrate the multi-step-ahead predic- 

tion performance of different models using the test dataset for 

both ZS01 and NB01 buoys. The model with the best capabil- 

ity was marked in bold with a light orange background, and the 

one with the second-best performance was marked in italics with 

a light grey background. 

The performance of the robust RNN models (LSTM, GRU, 

AEDLSTM and AEDGRU) was considerably better than that 

of the ARIMA, MLP and ERNN models according to the RMSE, 

R2 and MAPE statistics, which was probably because the ro-

bust RNNs are capable of memorizing long-term dependencies 

(Hochreiter and Schmidhuber, 1997; Gers, 2001; Cho et al., 2014). 

For buoys ZS01 and NB01, the robust RNNs presented accura-

cy improvements of at least 30% over the ARIMA and MLP 

models and at least 20% over the ERNN model in most cases. 

Considering that robust RNN models were more effecttive than 

the other models, we focus on the performance comparison be-

tween the robust RNNs as well as between the remaining mod-

els in the subsequent discussion. For better comparisons, we di-

vided the forecast steps into short-term predictions (steps 1 ~ 4) 

and middle-term predictions (steps 5 ~ 8).  

Among the ARIMA, MLP and ERNN models, in the case 

of the ZS01 dataset, the ERNN was the best model for both 

short-term and middle-term predictions, and its performance 

for middle-term predictions was even comparable to that of the 

LSTM and GRU models. However, for the NB01 dataset, the 

short-term predictions capabilities were still maintained, but 

the performance for middle-term predictions drastically declined 

and became even worse than that of the ARIMA and MLP 

models. This finding revealed that the ERNN model was rela-

tively unstable and did not always learn successfully, which 

was consistent with the study conducted by Ma et al. (2015). In 

addition, the MLP achieved better results than the ARIMA for 

both short-term and middle-term predictions. Overall, the ERNN 

model was slightly superior to the MLP model, and both of 

these models were stronger than the ARIMA for modelling our 

dataset. 

Detailed comparisons between the robust RNN models were 
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also conducted. With respect to the ZS01 dataset, the AEDGRU 

model achieved the best results for short-term predictions, since 

its RMSE, R2 and MAPE results were superior to those of the 

GRU, LSTM, and AEDLSTM models. Also, we noticed that 

the performance of the AEDLSTM model was superior to that 

of the GRU and LSTM models, although the improvement was 

not obvious, especially in the one-step-ahead and two-step-ahead 

predictions. 

With regard to the NB01 dataset, notable results were ob-

served for the short-term predictions. The performance of the 

GRU and LSTM for one-step-ahead and two-step-ahead pre-

dictions was even better than that of the AEDGRU and AEDLSTM, 

and the performance was still superior to the AEDGRU although

inferior to that of the AEDLSTM for three-step-ahead and four-

step-ahead predictions. 

However, in terms of middle-term predictions, the perfor-

mance of the AEDLSTM and AEDGRU models was consider-

ably superior to that of the LSTM and GRU models for both the 

ZS01 and NB01 datasets, which indicated that the AEDRNN 

models were more stable and accurate than the LSTM and GRU 

models for long time-series prediction. 

When comparing the LSTM and GRU models, the GRU’s 

performance was superior to that of the LSTM in most cases. 

Specifically, for short-term predictions, the GRU exceeded the 

LSTM for both the ZS01 and NB01 datasets overall. While for 

middle-term predictions, the GRU was basically superior to the 

 

 
 

Figure 6. Performance comparison of the ARIMA, MLP, ERNN, GRU, LSTM, AEDGRU and AEDLSTM models for the one-

step-ahead prediction using the ZS01 dataset. 
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Figure 7. Performance comparison of the ARIMA, MLP, ERNN, GRU, LSTM, AEDGRU and AEDLSTM models for the one-

step-ahead prediction using the NB01 dataset. 

 

LSTM for the ZS01 dataset but inferior to the LSTM for the 

NB01 dataset. The GRU required even less training time ben-

efited from its simplified architecture (Cho et al., 2014); thus, 

we concluded that the GRU was better than the LSTM for Chl-

a prediction in this study. 

When comparing the AEDLSTM and AEDGRU models, 

their short-term prediction performances were comparable, but 

the AEDLSTM significantly outperformed the AEDGRU for 

middle-term predictions according to the RMSE, R2, and MAPE 

results, which demonstrated that the AEDLSTM was more ro-

bust than the AEDGRU. 

In addition, it can be observed that some statistical indi- 

cators of the later-step prediction were even better than the 

earlier-step prediction for several models, such as the R2 of eight-

step-ahead prediction of AEDLSTM for the NB01 dataset. Also, 

we found that such phenomenon mainly occurred in the middle-

term predictions of the AEDRNN models, probably because 

the most relevant encoder states were selected and integrated 

through the attention-based temporal feature combination, which 

effectively reduced the accumulated errors and improved the 

prediction accuracy of the later-steps. On the other hand, pre-

dicting extreme value is often difficult, especially for the middle-

term prediction. However, extremum data usually has a large 

prediction bias and has a considerable impact on the statistical 

indicators, which probably leads to a lower accuracy. Therefore, 

the uncertainty and contingency of the extremum prediction in 

the middle-term prediction also increased the probability that 

the statistical indicators of later-step prediction surpassed the 

previous prediction. 
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To further test the forecasting performance in a more in- 

tuitive manner, the time series of the observed and predicted 

Chl-a using the ARIMA, MLP, ERNN, GRU, LSTM, AEDGRU 

and AEDLSTM models for the test period of both the ZS01 and 

NB01 buoys were plotted (Figures 6 ~ 9). Furthermore, the pre-

diction errors and the scatter plots of the predictions against 

the observations using the models were also plotted. Because too 

many figures are required to show all the predicte-dresults, the 

results of the one-step-ahead and eight-step-ahead predictions 

are presented. 

Figures 6 and 7 show that all models presented good consis-

tency between the real and predicted values for the one-step-

ahead predictions. But according to the prediction error fig-

ures, the robust RNNs were better able to fit the sudden changes 

of Chl-a, whereas the other models showed a delayed predic-

tion trend. This result was likely because of the insufficient 

learning ability of the traditional ANN and ARIMA models 

(Elman, 1990; Le et al., 2017). Moreover, the results of the ro-

bust RNNs were closer to the 1:1 line in the scatter figures than 

the other models.

 
 

Figure 8. Performance comparison of the ARIMA, MLP, ERNN, GRU, LSTM, AEDGRU and AEDLSTM models for the eight-

step-ahead predictions using the ZS01 dataset
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Figure 9. Performance comparison of the ARIMA, MLP, ERNN, GRU, LSTM, AEDGRU and AEDLSTM models for the eight-

step-ahead prediction using the NB01 dataset. 

 

The performance differences between these models for the 

eight-step-ahead prediction were more obvious as shown in Fig-

ures 8 and 9. The ARIMA, MLP, ERNN, GRU and LSTM mod-

els were not able to provide accurate predictions or well-capture 

the tendencies, although the GRU and LSTM models had better 

results than the ARIMA, MLP and ERNN models. Notably, the 

AEDGRU and AEDLSTM models obtained more accurate fore-

casting results and more consistent trends than the GRU and 

LSTM models, due to the capability of encoder-decoder mech-

anism and the consideration of attention-based temporal feature 

combination (Bahdanau et al., 2014). 

Based on the above analysis, several useful findings were 

observed: 

(1) By exploiting the long-term dependency memorizing 

capability, the robust RNN models (GRU, LSTM, AEDGRU 

and AEDLSTM) achieved considerably higher performance than 

the ARIMA, MLP and ERNN models, which confirmed the ap-

plicability of the robust RNN models for Chl-a predictions. 

(2) The AEDRNN models (AEDGRU and AEDLSTM) out-

performed the GRU and LSTM models, although the perfor-

mance of the GRU and LSTM for short-term predictions was 

comparable to that of the AEDRNN models. Considering that 

the middle-term predictions of Chl-a were important for gener-

ating accurate inferences on algal blooms (Wang et al., 2015), 

the AEDRNN models were better than the GRU and LSTM 

models. However, if only short-term predictions were needed 

in certain areas, the GRU and LSTM models could be the better 

choices since they are more efficient. 

(3) The performance of the GRU model was superior to 

that of the LSTM model in most cases of our experiments. Be-
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cause the GRU model was more efficient with its simplified 

architecture, we concluded that the GRU model was better than 

the LSTM model for Chl-a predictions. 

(4) Although the AEDLSTM and AEDGRU models were 

comparable for short-term predictions, the AEDLSTM achieved 

significantly better results than the AEDGRU for middle-term 

predictions. In summary, the AEDLSTM model was consid-

ered to be the best model for Chl-a predictions in this study. 

6. Conclusions 

To accurately predict Chl-a in the coastal areas, this pa- 

per introduced the LSTM and GRU models to capture the long-

term dependencies, and based on the LSTM and GRU units, 

two simplified AEDRNN models were also developed for time 

series forecasting. To validate the effectiveness of the robust 

RNN models, the Chl-a data from the ZS01 and NB01 buoys 

in the Zhejiang coastal area covering the period from January 

1, 2015 to August 31, 2017 were collected. The first 75% of the 

data and the middle 15% of the data were used for training and 

validation, and the last 10% of the data was utilized to test the 

models. In addition, the ARIMA, MLP, and ERNN models 

were compared with the robust RNN models based on the same 

dataset.  

The results provided several helpful conclusions. (1) The 

robust RNN models outperformed other algorithms in terms of 

stability and accuracy, which confirmed the applicability of the 

robust RNN models for Chl-a predictions. (2) By exploiting the 

capabilities of encoder-decoder mechanism and attention-based 

feature combination, the AEDRNN models exceeded the GRU 

and LSTM models, especially for long time-series predictions. 

(3) The GRU was a better choice than the LSTM because the 

GRU obtained a superior performance and higher efficiency 

than the LSTM in most cases of the experiments. (4) The 

AEDLSTM was the most robust and suitable model for Chl-a 

predictions in terms of its much higher performance than all 

other models. 

In addition, some general guidance can be concluded for 

the time-series forecasting of other phenomena. Specifically, 

the ARIMA and MLP models are not quite accurate for pre- 

diction, but their computation efficiency is superior to other 

models, so they are suitable for simple and fast predictions. The 

ERNN model has higher accuracy than the ARIMA and MLP 

models, but is unstable so that it doesn’t always learn success-

fully. For greater accuracy and stability, the robust RNN is a 

better choice. Among them, the accuracy of short-term predic-

tion of GRU and LSTM is comparable to the AEDRNN models. 

Considering the higher efficiency, GRU and LSTM are the bet-

ter choice for short-term forecasting, while AEDRNN will be 

the best for middle-term forecasting. 

Future work should focus on including external covariate 

information in the robust RNN models, which implies that var-

ious water quality parameters can be used as additional inputs. 

In addition, the performance of these models for long-term pre-

dictions should be further studied. Another interesting direction 

of future research is to combine these models into a hybrid ar-

chitecture to improve the learning ability. 
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