Supplementary Material for:

Recent advances in constructing three-dimensional graphitic carbon nitride based materials and their applications in environmental photocatalysis, photoelectrochemistry, and electrochemistry

Wu Xia¹, Xin Li¹, Min Cheng¹, Weiping Xiong¹, Biao Song, Yang Liu, Yang Yang, Wenjun Wang, Sha Chen, Guangming Zeng^{*}, Chengyun Zhou^{*}

College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China

^{*} Corresponding author at: College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China.

Tel.: +86-731-88822754; fax: +86-731-88823701.

E-mail address: zgming@hnu.edu.cn (G.M. Zeng), zhouchengyun@hnu.edu.cn (C.Y. Zhou).

¹ These authors contribute equally to this article.

Catalyst	Light source	Catalyst concentration (g/L)	Pollutant concentration (mg/L)	Degradation efficiency	Enhancement factor over reference photocatalyst	Main active species	References
HP-CN	35 W metal halide lamp (λ≥420 nm)	0.5	RhB: 10 MO: 10	RhB: 98%, 3 h MO: 35%, 3 h	bulk g-C ₃ N ₄ : RhB: 5.0 MO: 22.3	N/A	(Shen et al., 2015)
CNGA	500W Xe lamp (λ> 420 nm)	1	MO: 20	MO: 92%, 4 h	g-C ₃ N ₄ : 7.6	h⁺, ∙OH	(Tong et al., 2015)
C ₃ N ₄ -agar hybrid hydrogel	500W Xe lamp (λ= 420 nm)	0.5	MB: 3×10 ⁻⁵ mol/L Phenol: 5 ppm	N/A	pure g-C ₃ N ₄ : MB: 4.5 Phenol: 1.3	N/A	(Zhang et al., 2016a)
TE-C ₃ N ₄	500W UV lamp ($\lambda = 200-400$ nm)	1	RhB: 20	100%, 200 min	pure g-C ₃ N ₄ : 1.4	N/A	(Yuan et al., 2016)
C ₃ N ₄ /SiO ₂	500 W Xe lamp with a 420 nm	0.5	MB: 3×10 ⁻⁵ mol/L	N/A	pure g-C ₃ N ₄ : MB: 6	N/A	(Zhang et al., 2016b)

Table S1: The 3D CNBMs for degrading organic pollutants.

Catalyst	Light source	Catalyst concentration (g/L)	Pollutant concentration (mg/L)	Degradation efficiency	Enhancement factor over reference photocatalyst	Main active species	References
TiO ₂ /GAs	cutoff filter 500 W Xe lamp illumination	0.3	Phenol: 5 ppm MB: 20	90%, 30 min	Phenol: 3.1 pure TiO ₂ : 11.8 pure TiO ₂ : 2.8	N/A	(Li et al., 2016)
TiO ₂ /gC ₃ N ₄ /G	with N ₂ atmosphere	2	NB: 0.2 mol/L	97%, 4 h	pure g-C ₃ N ₄ : 3.7	N/A	(Zhang et al., 2017a)
Cu ₂ O/g- C ₃ N ₄ /RGO	A 300W Xe lamp with 400 nm cut-off filter	0.5	MB: 30 MO: 30	MB: 96%, 80 min MO:83%, 80 min	N/A	$\cdot \text{OH}, \cdot \text{O}_2^-$	(Yan et al., 2017)
CN/GOAs	300W Xe lamp (λ>420 nm)	0.12	MB: 20 MO: 20	MB: 88.8%, 40 min MO: 91.1%, 40 min	N/A	$\cdot O_2^-$	(Tang et al., 2017)
g- C ₃ N ₄ /BiOBr/R GO	A 300W Xe lamp with 420 nm cut-off filter	1	RhB: 10	66%, 1 h	g-C ₃ N ₄ : 2.2 BiOBr: 2	$h^+, \cdot O_2^-$	(Yu et al., 2017)

Catalyst	Light source	Catalyst concentration (g/L)	Pollutant concentration (mg/L)	Degradation efficiency	Enhancement factor over reference photocatalyst	Main active species	References
TiO _{2-x} /Ag/g- C ₃ N ₄	A 300W Xe lamp with 420 nm cut-off filter	0.7	MB: 10 MO: 10	MB: 99% MO: 87%	N/A	$\cdot \text{OH}, \cdot \text{O}_2^-$	(Cao et al., 2018)
g-C ₃ N ₄ -TiO ₂ - GA	500W Xe lamp (λ>420 nm)	0.2	RhB: 20	98.4%, 60 min	N/A	N/A	(Zhang et al., 2018)
GA-CQDs/ CNN	A 300W Xe lamp with 420 nm cut-off filter	0.3	MO: 30	91.1%, 4 h	BCN: 7.6 CNN: 2.3	N/A	(He et al., 2018)
NiO/g-C ₃ N ₄	a 500 W halogen lamp	0.5	MG: 10 ppm	96.9%, 150 min	NiO: 1.3 g-C ₃ N ₄ : 2.3	$h^+, \cdot O_2^-$	(Tzvetkov et al., 2018)
g-C ₃ N ₄ /Bi ₂ WO ₆	A 400 W metal halide with a 400 nm cut-off	0.8	MO: 10	MO: 98.2%, 120min	Bi ₂ WO ₆ : 2.5 g-C ₃ N ₄ : 3.1	\cdot OH, h ⁺	(Gao et al., 2018)
g-C ₃ N ₄ aggregates of	A 300W Xe lamp with 420	0.5	TC: 30	97.9%, 12 min	BCN: 3.1	$\cdot \text{OH}, \cdot \text{O}_2^-$	(Wang et al., 2018a)

Catalyst	Light source	Catalyst concentration (g/L)	Pollutant concentration (mg/L)	Degradation efficiency	Enhancement factor over reference photocatalyst	Main active species	References
hollow bubbles	nm cut-off filter						
g-C3N4- ZnO@GA(30%	300W (λ≥420 nm)	0.2	RhB: 20	81.0%, 2 h	ZnO @ GA: 2.8	$\cdot OH$, h ⁺ , $\cdot O_2^-$	(Zhang et al., 2019)
	300W (λ≤380	0.2	DLD. 20	92 70/ 2 h	7-0 @ C A . 2 4	·OН,	
) nm)	nm)	0.2	KnB: 20	82.7%, 2 fi	2110 @ UA. 2.4	$h^+, \cdot O_2^-$	
GO/MoS ₂ /g-						·OН,	
C_3N_4	N/A	1	RhB:20	96.7%, 5 h	N/A	(Yan et al., 2019) $h^+, \cdot O_2^-$	
	500W (λ≤420				CdS: 3.64		
CdS/g-C ₃ N ₄	nm)	1	RhB: 10	95.6%, 2 h	g-C ₃ N ₄ : 6.93	$h^+, \cdot O_2^-$	(Liu et al., 2020)
	500W (λ≤420					·OН,	
g-C ₃ N ₄ /Cu ₂ O	nm)	0.6	MO:10	97%, 2 h	N/A	h^+ , $\cdot O_2^-$	(Si et al., 2020)
$g-C_3N_4/\alpha$ -					CN: 4.75	· ·	
Fe ₂ O ₃ /GA	N/A	0.5	MB: 14.37	76.5%, 2 h	CNGA: 2.33	$\cdot OH, h^+$	(Kim et al., 2020)
					g-C ₃ N ₄ : 2.7		
Nb_2O_5 - $gC_3N_4/$	300W (λ≥420	0.375	RhB:20	94.8%, 100 min	- NbNR-CN:	$h^+, \cdot O_2^-$	(Xu et al., 2020)
rGA	nm)				1.86		,

Catalyst	Light source	Catalyst concentration (g/L)	Pollutant concentration (mg/L)	Degradation efficiency	Enhancement factor over reference photocatalyst	Main active species	References
C/g-C ₃ N ₄	200W (λ≤420 nm)	1	RhB: 10	90%, 10 min	N/A	h^+ , $\cdot O_2^-$	(Deng et al., 2020)

Catalyst	Light source	Reaction solution	HER	Reference photocatalyst and its activity	Enhancement factor over ref photocatalyst	AQE(%)	References
Porous g-C ₃ N ₄	$\lambda > 420 \text{ nm}$	N/A	68.5 µmol/h	bulk g-C ₃ N ₄ : 14.3 μmol/h	4.8	N/A	(Shen et al., 2014)
MCN	300W Xe lamp (λ= 420nm)	TEOA, 10 vol%	60.2 µmol/h	bulk g-C3N4: 9.86 μmol/h	6.1	7.8	(Huang et al., 2015)
PCNM	300W Xe lamp (λ> 420nm)	TEOA, 10 vol%	29.0 µmol/h	g-C ₃ N ₄ powder: 10.2 µmol/h	2.84	N/A	(Liang et al., 2015)
3 wt% Pt @g- C ₃ N ₄ -NBs	300W Xe lamp (λ< 420nm)	TEOA, 10 vol%	1360 µmol/h/g	2 wt% Pt @bulk g- C ₃ N ₄ : 124.7 μmol/h/g	10.9	12	(Zeng et al., 2016)
CNMS	300W Xe lamp (λ>	TEOA, 10 vol%	392 µmol/h	bulk g-C ₃ N ₄ : 27 μmol/h	14.5	6.3	(Huang et al., 2016)

Table S2: The 3D CNBMs for photocatalytic H_2 production.

Catalyst	Light source	Reaction solution	HER	Reference photocatalyst and its activity	Enhancement factor over ref photocatalyst	AQE(%)	References
3D g- C ₃ N ₄ /TNA	420nm) 300W Xe lamp (λ≥ 400nm)	methanol, 10 vol%	243 µmol/h/g	sole g-C ₃ N ₄ : 51.7	4.7	N/A	(Zhang et al., 2017b)
BPMCN	300W Xe lamp (λ> 400nm)	TEOA, 10 vol%	1640 µmol/h/g	pure g-C ₃ N ₄ : 267 μmol/h	6.1	N/A	(Cao et al., 2017)
UM3	300W Xe lamp (λ> 420nm)	lactic acid, 20 vol%	3579 μmol/h/g	bulk g-C ₃ N4: 147 μmol/h/g	23	2.78	(Tian et al., 2017)
N-TiO2/g- C3N4@NixP	300 W Xe lamp	N/A	5438 µmol/h/g	N-TiO ₂ /g- C ₃ N ₄ : 725µmol/h/g	7.5	N/A	(Wu et al., 2018)
flower-like P- doped mesoporous g-	A 300W Xe lamp with 420 nm cut-off	TEOA	256.4 µmol/h	bulk g-C3N4: 10.7μmol/h	24	N/A	(Yang et al., 2018)

Catalyst	Light source	Reaction solution	HER	Reference photocatalyst and its activity	Enhancement factor over ref photocatalyst	AQE(%)	References
C_3N_4	filter						
Ni(OH) ₂ /gC ₃ N	300W (λ> 400 nm)	TEOA, 20 vol%	87.2 μmol/h	unmodified 3D g-C ₃ N ₄ : 1.4 µmol/h	76	8.2	(Cao et al., 2019)
CNGO/CNQD	300W (λ= 350-870 nm)	ethanol, 25 vol %	1231 µmol/h	CN: 76.9	16	13	(Huang et al., 2019)
$3D C/g-C_3N_4$	300W (λ>420 nm)	TEOA, 10 vol%	1610 µmol/h/g	g-C ₃ N ₄ : 230 μmol/h/g	7	15	(Wang et al., 2019)
Meso- gC ₃ N ₄ /WP/Me so-gC ₃ N ₄	N/A	methanol, 20 vol%	198.16 μmol/h/g	pristine g- C ₃ N4: 19.8 μmol/h/g	10	N/A	(Yang et al., 2020)
CNF	300W (λ<400 nm)	TEOA, 10 vol%	129.5 µmol/h	N/A	bulk CN: 27.6 pure CNF: 1.8	N/A	(Zhao et al., 2020)
PCNC	300W (λ≥420 nm)	TEOA, 20 vol%	5289.9 μmol/h/g	CN: 146.8 μmol/h/g	36	32.4	(Sun et al., 2020b)
g-C ₃ N ₄ /Ti ₃ C ₂	300W (λ≥420	TEOA, 10	116.2	pristine g-	6	N/A	(Li et al., 2020)

Catalyst	Light source	Reaction solution	HER	Reference photocatalyst and its activity	Enhancement factor over ref photocatalyst	AQE(%)	References
	nm)	vol%	µmol/h/g	C ₃ N ₄ : 19.4			
				µmol/h/g			
		TEO 4 15		3% Pt@bulk			
PPCN	λ≥420 nm	1EOA, 15	430 µmol/h/g	C3N4 (BCN):	9.5	N/A	(Qiu et al., 2020)
		VO170		$45 \ \mu mol/h/g$			

Table S3: The 3D CNBMs for CO2 reduction.

Catalyst	Light source	Activity	Reference photocatalyst and its activity	References
Meso-g-C ₃ N ₄	Hg lamp	CO: 3.48 mmol/g	flake-like g-C ₃ N ₄ , CO:	(Wang et al., 2014)
			2.26 mmol/g	
α -Fe ₂ O ₃ /g-C ₃ N ₄	300W Xe lamp (λ>	CO: 27.2 mmol/h/g	pure g-C ₃ N ₄ , CO: 10.3	(Jiang et al., 2018)
	420nm)		µmol/h/g	
g-C ₃ N ₄ /BiFeWO _x	300W Xe lamp	CO: 43 µmol/h	BiFeWO _x , CO: 5.2µmol/h	(Wang et al., 2018c)
			g-C ₃ N ₄ , CO: 8.9 µmol/h	
3D g-C ₃ N ₄ /C-NS	500W Xe lamp	CO: 229 µmol/h	H-g-C ₃ N ₄ /C-NS, CO:	(Wang et al., 2018b)
		CH4: 112 µmol/h	18.32 μmol/h	
			CH4: 8.96 µmol/h	
CoZnAl-LDH/RGO/g-	300W Xe lamp	CO: 50.53 µmol/h	g-C ₃ N ₄ , CO: 2.13 µmol/h	(Yang et al., 2019b)
C_3N_4				
Au/g-C ₃ N ₄	8W Hg lamp	CO: 77.5 µmol/h	g-C ₃ N ₄ , CO: 13 µmol/h	(Li et al., 2019)
		CH4: 38.5µmol/h	CH4: 4.1µmol/h	
CeO ₂ /ZnIn ₂ S ₄	300W Xe lamp	CH4: 0.542 µmol/h/g	ZnIn ₂ S ₄ , CH ₄ : 0.139	(Yang et al., 2019a)
			µmol/h/g	
			CeO ₂ , CH ₄ : 0.073	

Catalyst	Light course	A ativity	Reference photocatalyst	Deferences
	Light source	Activity	and its activity	(Sun et al., 2020a)
			µmol/h/g	
Cu-NPs/g-C ₃ N ₄ foam	300W Xe lamp	CO: 10.247 µmol/h/g	g-C ₃ N ₄ powder	(Sun et al., 2020a)
			CO: 1.61 µmol/h/g	

References

- Cao, R.Y., Yang, H.C., Zhang, S.W. and Xu, X.J. (2019). Engineering of Z-scheme 2D/3D architectures with Ni(OH)₂ on 3D porous g-C₃N₄ for efficiently photocatalytic H₂ evolution. *Applied Catalysis B: environmental*. 258, 117997. http://doi.org/10.1016/j.apcatb.2019.117997.
- Cao, Y., Xing, Z.P., Li, Z.Z., Wu, X.Y., Hu, M.Q., Yan, X., Zhu, Q., Yang, S.L. and Zhou, W. (2018). Mesoporous black TiO_{2-x}/Ag nanospheres coupled with g-C₃N₄ nanosheets as 3D/2D ternary heterojunctions visible light photocatalysts. *Journal* of *Hazardous Materials*. 343, 181-190. http://doi.org/10.1016/j.jhazmat.2017.09.031.
- Cao, Y.Z., Gao, Q., Li, Q., Jing, X.B., Wang, S.F. and Wang, W. (2017). Synthesis of 3D porous MoS₂/g-C₃N₄ heterojunction as a high efficiency photocatalyst for boosting H₂ evolution activity. *RSC Advances*. 7(65), 40727-40733. http://doi.org/10.1039/c7ra06774g.
- Deng, J.Y., Zhu, S.L., Zheng, J.F. and Nie, L.H. (2020). Preparation of multidimensional (1D/2D/3D) carbon/g-C₃N₄ composite photocatalyst with enhanced visible-light catalytic performance. *Journal of Colloid and Interface Science*. 569, 320-331. <u>http://doi.org/10.1016/j.jcis.2020.02.100</u>.
- Gao, X.M., Zhang, R., Shang, Y.Y., Fei, J. and Fu, F. (2018). Synergism of 3D g-C₃N₄ decorated Bi₂WO₆ microspheres with efficient visible light catalytic activity. *Journal of Physics and Chemistry of Solids*. 119, 19-28. <u>http://doi.org/10.1016/j.jpcs.2018.03.032</u>.
- He, H.J., Huang, L.H., Zhong, Z.J. and Tan, S.Z. (2018). Constructing threedimensional porous graphene-carbon quantum dots/g-C₃N₄ nanosheet aerogel metal-free photocatalyst with enhanced photocatalytic activity. *Applied Surface Science*. 441, 285-294. http://doi.org/10.1016/j.apsusc.2018.01.298.
- Huang, Z.F., Song, J.J., Pan, L., Wang, Z.M., Zhang, X.Q., Zou, J.J., Mi, W.B., Zhang, X.W. and Wang, L. (2015). Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. *Nano Energy*. 12, 646-656. <u>http://doi.org/10.1016/j.nanoen.2015.01.043</u>.
- Huang, Z.H., Chen, H., Zhao, L., He, X., Du, Y.Y., Fang, W., Li, W.X. and Tian, P. (2019). Constructing g-C₃N₄ quantum dots modified g-C₃N₄/GO nanosheet aerogel for UV-Vis-NIR driven highly efficient photocatalytic H₂ production. *International Journal of Hydrogen Energy*. 44(59), 31041-31052. <u>http://doi.org/10.1016/j.ijhydene.2019.10.028</u>.
- Huang, Z.J., Li, F.B., Chen, B.F. and Yuan, G.Q. (2016). Hydrogen from Water over Openly-Structured Graphitic Carbon Nitride Polymer through Photocatalysis. *Chemsuschem.* 9(5), 478-484. <u>http://doi.org/10.1002/cssc.201501520</u>.
- Jiang, Z.F., Wan, W.M., Li, H.M., Yuan, S.Q., Zhao, H.J. and Wong, P.K. (2018). A Hierarchical Z-Scheme alpha-Fe₂O₃/g-C₃N₄ Hybrid for Enhanced Photocatalytic CO₂ Reduction. *Advanced Materials*. 30(10), 9. http://doi.org/10.1002/adma.201706108.
- Kim, C., Cho, K.M., Park, K., Kim, K.H., Gereige, I. and Jung, H. (2020). Ternary Hybrid Aerogels of g-C₃N₄/α-Fe₂O₃ on a 3D Graphene Network: An Efficient and Recyclable Z-Scheme Photocatalyst. *ChemPlusChem.* 85(1), 169-175. <u>http://doi.org/10.1002/cplu.201900688</u>.
- Li, J.M., Zhao, L., Wang, S.M., Li, J., Wang, G.H. and Wang, J. (2020). In situ fabrication of 2D/3D g-C₃N₄/Ti₃C₂ (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution. *Applied Surface Science*. 515, 145922. http://doi.org/10.1016/j.apsusc.2020.145922.

- Li, X., Liu, C., Wu, D., Li, J., Huo, P. and Wang, H. (2019). Improved charge transfer by size-dependent plasmonic Au on C₃N₄ for efficient photocatalytic oxidation of RhB and CO₂ reduction. *Chinese Journal of Catalysis*. 40(6), 928-939. http://doi.org/10.1016/s1872-2067(19)63347-4.
- Li, Y., Yang, J., Zheng, S.H., Zeng, W.W., Zhao, N. and Shen, M. (2016). One-pot synthesis of 3D TiO₂-reduced graphene oxide aerogels with superior adsorption capacity and enhanced visible-light photocatalytic performance. *Ceramics International*. 42(16), 19091-19096. http://doi.org/10.1016/j.ceramint.2016.09.069.
- Liang, Q., Li, Z., Yu, X., Huang, Z.H., Kang, F. and Yang, Q.H. (2015). Macroscopic 3D Porous Graphitic Carbon Nitride Monolith for Enhanced Photocatalytic Hydrogen Evolution. *Adv Mater*. 27(31), 4634-4639. http://doi.org/10.1002/adma.201502057.
- Liu, X.M., Liu, Y., Zhang, W.K., Zhong, Q.Y. and Ma, X.Y. (2020). In situ selfassembly of 3D hierarchical 2D/2D CdS/g-C₃N₄ hereojunction with excellent photocatalytic performance. *Materials Science in Semiconductor Processing*. 105, 104734. <u>http://doi.org/10.1016/j.mssp.2019.104734</u>.
- Qiu, X.B., Qiu, L.F., Ma, M.F., Hou, Y.Y. and Duo, S.W. (2020). A 3D Hierarchical Pancake-Like Porous Carbon Nitride for Highly Enhanced Visible-Light Photocatalytic H₂ Evolution. *Catalysts*. 10(1), 77. <u>http://doi.org/10.3390/catal10010077</u>.
- Shen, B., Hong, Z.h., Chen, Y.I., Lin, B.Z. and Gao, B.f. (2014). Template-free synthesis of a novel porous g-C₃N₄ with 3D hierarchical structure for enhanced photocatalytic H₂ evolution. *Materials Letters*. 118, 208-211. http://doi.org/10.1016/j.matlet.2013.12.070.
- Shen, J.C., Yang, H., Shen, Q.H., Feng, Y., Cai, Q.F. and Yang, H.Y. (2015). Template-Free Synthesis of Three-Dimensional Nanoporous Bulk Graphitic Carbon Nitride with Remarkably Enhanced Photocatalytic Activity and Good Separation Properties. *European Journal of Inorganic Chemistry*. (15), 2611-2618. <u>http://doi.org/10.1002/ejic.201500105</u>.
- Si, Y., Zhang, X.X., Liang, T.T., Xu, X., Qiu, L.F., Li, P. and Duo, S.W. (2020). Facile in-situ synthesis of 2D/3D g-C₃N₄/Cu₂O heterojunction for high-performance photocatalytic dye degradation. *Materials Research Express*. 7(1), 015524. <u>http://doi.org/10.1088/2053-1591/ab6893</u>.
- Sun, Z.M., Fang, W., Zhao, L. and Wang, H.L. (2020a). 3D porous Cu-NPs/g-C₃N₄ foam with excellent CO₂ adsorption and Schottky junction effect for photocatalytic CO₂ reduction. *Applied Surface Science*. 504 <u>http://doi.org/10.1016/j.apsusc.2019.144347</u>.
- Sun, Z.Z., Wang, W., Chen, Q.W., Pu, Y.Y., He, H., Zhuang, W.M., He, J.Q. and Huang, L.M. (2020b). A hierarchical carbon nitride tube with oxygen doping and carbon defects promotes solar-to-hydrogen conversion. *Journal of Materials Chemistry* A. 8(6), 3160-3167. <u>http://doi.org/10.1039/c9ta13012h</u>.
- Tang, L., Jia, C.T., Xue, Y.C., Li, L., Wang, A.Q., Xu, G., Liu, N. and Wu, M.H. (2017).
 Fabrication of compressible and recyclable macroscopic g-C₃N₄/GO aerogel hybrids for visible-light harvesting: A promising strategy for water remediation. *Applied Catalysis B-environmental*. 219, 241-248. http://doi.org/10.1016/j.apcatb.2017.07.053.
- Tian, N., Zhang, Y.h., Li, X.w., Xiao, K., Du, X., Dong, F., Waterhouse, G.I.N., Zhang,
 T. and Huang, H.w. (2017). Precursor-reforming protocol to 3D mesoporous g-C₃N₄ established by ultrathin self-doped nanosheets for superior hydrogen

evolution. Nano Energy. 38, 72-81. http://doi.org/10.1016/j.nanoen.2017.05.038.

- Tong, Z.W., Yang, D., Shi, J.F., Nan, Y.H., Sun, Y.Y. and Jiang, Z.Y. (2015). Three-Dimensional Porous Aerogel Constructed by g-C₃N₄ and Graphene Oxide Nanosheets with Excellent Visible-Light Photocatalytic Performance. ACS Applied Materials & Interfaces. 7(46), 25693-25701. http://doi.org/10.1021/acsami.5b09503.
- Tzvetkov, G., Tsvetkov, M. and Spassov, T. (2018). Ammonia-evaporation-induced construction of three-dimensional NiO/g-C₃N₄ composite with enhanced adsorption and visible light-driven photocatalytic performance. *Superlattices and Microstructures*. 119, 122-133. <u>http://doi.org/10.1016/j.spmi.2018.04.048</u>.
- Wang, C.L., Liu, G.G., Song, K., Wang, X.Q., Wang, H., Zhao, N.Q. and He, F. (2019). Three-Dimensional Hierarchical Porous Carbon/Graphitic Carbon Nitride Composites for Efficient Photocatalytic Hydrogen Production. *ChemCatChem*. 11(24), 6364-6371. <u>http://doi.org/10.1002/cctc.201901598</u>.
- Wang, X.L., Liu, Q., Yang, Q., Zhang, Z.G. and Fang, X.M. (2018a). Threedimensional g-C₃N₄ aggregates of hollow bubbles with high photocatalytic degradation of tetracycline. *Carbon.* 136, 103-112. <u>http://doi.org/10.1016/j.carbon.2018.04.059</u>.
- Wang, Y.G., Wang, F., Zuo, Y.H., Zhang, X.D. and Cui, L.F. (2014). Simple synthesis of ordered cubic mesoporous graphitic carbon nitride by chemical vapor deposition method using melamine. *Materials Letters*. 136, 271-273. <u>http://doi.org/10.1016/j.matlet.2014.08.078</u>.
- Wang, Y.G., Xia, Q.N., Bai, X., Ge, Z.G., Yang, Q., Yin, C.C., Kang, S.F., Dong, M.D. and Li, X. (2018b). Carbothermal activation synthesis of 3D porous g-C₃N₄/carbon nanosheets composite with superior performance for CO₂ photoreduction. *Applied Catalysis B: environmental*. 239, 196-203. <u>http://doi.org/10.1016/j.apcatb.2018.08.018</u>.
- Wang, Y.N., Zeng, Y.Q., Wan, S.P., Cai, W., Song, F.J., Zhang, S.L. and Zhong, Q. (2018c). In Situ Fabrication of 3D Octahedral g-C₃N₄/BiFeWO_x Double-Heterojunction for Highly Selective CO₂ Photoreduction to CO Under Visible Light. *ChemCatChem*. 10(20), 4578-4585. <u>http://doi.org/10.1002/cctc.201800959</u>.
- Wu, M., Zhang, J., Liu, C.X., Gong, Y.S., Wang, R., He, B.B. and Wang, H.W. (2018). Rational Design and Fabrication of Noble-metal-free NixP Cocatalyst Embedded 3D N-TiO₂/g-C₃N₄ Heterojunctions with Enhanced Photocatalytic Hydrogen Evolution. *ChemCatChem*. 10(14), 3069-3077. http://doi.org/10.1002/cctc.201800197.
- Xu, Z.N., Jiang, J.X., Zhang, Q.Q., Chen, G.B., Zhou, L.M. and Li, L. (2020). 3D graphene aerogel composite of 1D-2D Nb₂O₅-g-C₃N₄ heterojunction with excellent adsorption and visible-light photocatalytic performance. *Journal of Colloid and Interface Science*. 563, 131-138. http://doi.org/10.1016/j.jcis.2019.12.002.
- Yan, J., Song, Z.L., Wang, X., Xu, Y.G., Pu, W.J., Ji, H.Y., Xu, H., Yuan, S.Q. and Li, H.M. (2019). Construction of 3D Hierarchical GO/MoS₂/g-C₃N₄ Ternary Nanocomposites with Enhanced Visible-Light Photocatalytic Degradation Performance. *Chemistry Select.* 4(24), 7123-7133. <u>http://doi.org/10.1002/slct.201901472</u>.
- Yan, X.R., Xu, R.P., Guo, J.K., Cai, X., Chen, D.J., Huang, L.H., Xiong, Y.Q. and Tan, S.Z. (2017). Enhanced photocatalytic activity of Cu₂O/g-C₃N₄ heterojunction coupled with reduced graphene oxide three-dimensional aerogel photocatalysis. *Materials Research Bulletin.* 96, 18-27.

http://doi.org/10.1016/j.materresbull.2016.12.009.

- Yang, C., Li, Q., Xia, Y., Lv, K. and Li, M. (2019a). Enhanced visible-light photocatalytic CO₂ reduction performance of ZnIn₂S₄ microspheres by using CeO₂ as cocatalyst. *Applied Surface Science*. 464, 388-395. http://doi.org/10.1016/j.apsusc.2018.09.099.
- Yang, H.Y., Zhou, Y.M., Wang, Y.Y., Hu, S.C., Wang, B.B., Liao, Q., Li, H.F., Bao, J.H., Ge, G.Y. and Jia, S.K. (2018). Three-dimensional flower-like phosphorus-doped g-C₃N₄ with a high surface area for visible-light photocatalytic hydrogen evolution. *Journal of Materials Chemistry A*. 6(34), 16485-16494. http://doi.org/10.1039/c8ta05723k.
- Yang, Y., Wu, J., Xiao, T., Tang, Z., Shen, J., Li, H., Zhou, Y. and Zou, Z. (2019b). Urchin-like hierarchical CoZnAl-LDH/RGO/g-C₃N₄ hybrid as a Z-scheme photocatalyst for efficient and selective CO₂ reduction. *Applied Catalysis Benvironmental*. 255 <u>http://doi.org/10.1016/j.apcatb.2019.117771</u>.
- Yang, Z.K., Xing, Z.P., Feng, Q.N., Jiang, H., Zhang, J.Q., Xiao, Y.W., Li, Z., Chen, P. and Zhou, W. (2020). Sandwich-like mesoporous graphite-like carbon nitride (Meso-g-C₃N₄)/WP/Meso-g-C₃N₄ laminated heterojunctions solar-driven photocatalysts. *Journal of Colloid and Interface Science*. 568, 255-263. http://doi.org/10.1016/j.jcis.2020.02.060.
- Yu, X., Wu, P.W., Qi, C.X., Shi, J.J., Feng, L.J., Li, C.H. and Wang, L. (2017). Ternarycomponent reduced graphene oxide aerogel constructed by g-C₃N₄/BiOBr heterojunction and graphene oxide with enhanced photocatalytic performance. *Journal of Alloys and Compounds*. 729, 162-170. http://doi.org/10.1016/j.jallcom.2017.09.175.
- Yuan, X.Y., Zhou, C., Jin, Y.R., Jing, Q.Y., Yang, Y.L., Shen, X., Tang, Q., Mu, Y.H. and Du, A.K. (2016). Facile synthesis of 3D porous thermally exfoliated g-C₃N₄ nanosheet with enhanced photocatalytic degradation of organic dye. *Journal of Colloid and Interface Science*. 468, 211-219. http://doi.org/10.1016/j.jcis.2016.01.048.
- Zeng, Y.X., Liu, C.B., Wang, L.L., Zhang, S.Q., Ding, Y.B., Xu, Y.Z., Liu, Y.T. and Luo, S.L. (2016). A three-dimensional graphitic carbon nitride belt network for enhanced visible light photocatalytic hydrogen evolution. *Journal of Materials Chemistry A*. 4(48), 19003-19010. <u>http://doi.org/10.1039/c6ta07397b</u>.
- Zhang, J.J., Fang, S.S., Mei, J.Y., Zheng, G.P., Zheng, X.C. and Guan, X.X. (2018). High-efficiency removal of rhodamine B dye in water using g-C₃N₄ and TiO₂ cohybridized 3D graphene aerogel composites. *Separation and Purification Technology*. 194, 96-103. <u>http://doi.org/10.1016/j.seppur.2017.11.035</u>.
- Zhang, J.Y., Mei, J.Y., Yi, S.S. and Guan, X.X. (2019). Constructing of Z-scheme 3D g-C₃N₄-ZnO@graphene aerogel heterojunctions for high-efficient adsorption and photodegradation of organic pollutants. *Applied Surface Science*. 492, 808-817. <u>http://doi.org/10.1016/j.apsusc.2019.06.261</u>.
- Zhang, L.Q., He, X., Xu, X.W., Liu, C., Duan, Y.L., Hou, L.Q., Zhou, Q.D., Ma, C., Yang, X.P., Liu, R., Yang, F., Cui, L.H., Xu, C.M. and Li, Y.F. (2017a). Highly active TiO₂/g-C₃N₄/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene. *Applied Catalysis B: environmental*. 203, 1-8. <u>http://doi.org/10.1016/j.apcatb.2016.10.003</u>.
- Zhang, M., Luo, W.J., Wei, Z., Jiang, W.J., Liu, D. and Zhu, Y.F. (2016a). Separation free C₃N₄/SiO₂ hybrid hydrogels as high active photocatalysts for TOC removal. *Applied Catalysis B-environmental*. 194, 105-110. <u>http://doi.org/10.1016/j.apcatb.2016.04.049</u>.

- Zhang, M., Jiang, W.J., Liu, D., Wang, J., Liu, Y.F., Zhu, Y.Y. and Zhu, Y.F. (2016b). Photodegradation of phenol via C₃N₄-agar hybrid hydrogel 3D photocatalysts with free separation. *Applied Catalysis B: environmental*. 183, 263-268. http://doi.org/10.1016/j.apcatb.2015.10.049.
- Zhang, Q., Wang, H., Chen, S., Su, Y. and Quan, X. (2017b). Three-dimensional TiO₂ nanotube arrays combined with g-C₃N₄ quantum dots for visible light-driven photocatalytic hydrogen production. *RSC Advances*. 7(22), 13223-13227. http://doi.org/10.1039/c7ra00039a.
- Zhao, S., Fang, J.S., Wang, Y.Y., Zhang, Y.W., Zhou, Y.M. and Zhuo, S.P. (2020). Construction of three-dimensional mesoporous carbon nitride with high surface area for efficient visible-light-driven hydrogen evolution. *Journal of Colloid and Interface Science*. 561, 601-608. <u>http://doi.org/10.1016/j.jcis.2019.11.035</u>.