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ABSTRACT.  The extent of arsenic contamination in the groundwater has been estimated using artificial neural network (ANN) 
based on multi-layer perceptron (MLP) architecture. The input data to the ANN comprised samples collected from different arsenic 
affected blocks of Malda district, West Bengal, India. Each data sample consisted of the amount of arsenic contaminant observed in the 
groundwater together with other geochemical parameters believed to have some relationship with the corresponding arsenic 
contaminant. Here, the inputs to the ANN were observed values for pH (acidic-alkalinity ratio), specific conductivity, total dissolved 
solids (TDS), salinity, dissolved oxygen (DO), redox potential (Eh), and depth of tube well water, while the expected output for 
training the ANN was the amount of corresponding arsenic contaminant observed in the groundwater. Using the back propagation 
technique, the ANN model was trained with a subset of the input data. The trained ANN model was then used to estimate the arsenic 
contamination in groundwater beyond the specified training data. The quality of the ANN simulations was evaluated in terms of three 
different error measures; namely, the root mean square error, the mean absolute error, and the percent mean relative error for proper 
interpretation of the results. We have also used two other methods for prediction; namely, multiple linear regression and active set 
support vector regression. Amongst the three methods, the ANN model exhibited better prediction results for predicting the arsenic 
contamination in groundwater. Based on this methodology, it is possible to show that a four-layer feed-forward back propagation ANN 
model could be used as an acceptable prediction model for estimating the arsenic contamination in groundwater. 
 
Keywords: arsenic contamination, back propagation neural network, groundwater arsenic estimation, active set support vector regres- 
sion, multiple linear regression 

 
 

 

1. Introduction 

The demand for fresh water resources has been increas- 
ing manifold over the past several years due to urbanization, 
expansion of agriculture, increasing population, rapid industria- 
lization and economic development. Potable ground water re- 
sources are already under pressure because of accelerated ab- 
straction, especially in the arid and semi-arid regions, and are 
placed under a great threat by pollution resulting from natural 
processes and various human impacts. As water quality conti- 
nues to decline, improved tools are needed to measure the wa- 
ter quality changes in hydrological cycle. In ground water pol- 
lution investigations, study of factors such as characterization 
of the water source, type of pollutants, mixing of pollutants 
with other water bodies, geochemical processes undergone, 
and the derived information on hydrodynamics of the system 
are very important.  
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Deleterious presence of certain elements in ground water 
especially arsenic is of great concern to mankind. Arsenic (As) 
is a toxic metalloid that makes up 0.00058% of the total mass 
of the earth’s crust. Concentration of arsenic in drinking water 
in excess of 50 ppb is detrimental to human health. Long term 
ingestion of arsenic contaminated water may cause hyper-pig- 
mentation, keratosis on hand palms and soles of feet, skin can- 
cer, peripheral vascular disease like black foot disease, etc. 
Concentration of arsenic content above permissible limit (50 
ppb) in water as per WHO’s pre-1993 guideline (which has 
been reduced to 10 ppb in 1993) has been detected in eight 
districts of West Bengal, India. These eight districts span a 
length of about 400 km and a width of about 60 km along a 
linear stretch of the upper deltaic alluvial plain of the Ganga- 
Bhagirathi river system. Around 560 villages in more than 50 
blocks within these districts have been affected by arsenic poi- 
soning. The estimated population in these eight districts is 
around 40 million (population survey, 2006), within which the 
estimated population using high arsenic contaminated water 
(above 50 ppb) is more than 1 million, while the estimated po- 
pulation using moderate arsenic contaminated water (between 
10 and 50 ppb) is around 1.3 million.  
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2. Study Area 

The study area forms a part of the fluviatile sedimentary 
area of the upper deltaic plain of the Ganga-Bhagirathi-Maha- 
nanda river system, exhibiting flat to gently undulating topo- 
graphy with a regional slope towards south. Geomorphologi- 
cally, the area is represented by three alluvial terraces: present 
day flood plain terraces, relatively older terraces, and the old- 
est terraces. The present day flood plain terraces (comprising 
silver white sand, silt and clay) are followed by the older terra- 
ces (represented by meander belts, cut off channels, and swam- 
py area), which in turn are followed up by the oldest terraces. 
The successive terraces are around one meter high from each 
other. The geological formation comprises several cycles of 
sand, silt, and clay with carbonaceous matters, and at some 
places, with carbonate and ferruginous concretions. The areas 
having Arsenic traces occur mostly within the older terraces 

whereas the areas having arsenic content beyond the permis- 
sible limit (> 50 ppb) occur within a depth of 10 to 30 meters. 
The wide variation or heterogeneity of arsenic concentration 
at the same depth in areas that are only few meters apart poses 
problem in delineating its distribution pattern. 

 

 
 

Figure 1. Map and blocks of Malda district in west Bengal, 
India. 

3. Methodology and Data Collection 

Groundwater samples were collected during post-monsoon 
period (Nov. to Mar.) after ten minutes pumping of each tube 
well. A total of 85 water samples were collected from dif- 
ferent blocks [Kaliachak blocks 1, 2 and 3; English (Ingraj) 
Bazar block; Manickchak block; Old Malda block and parts of 
Ratua blocks 1 and 2] covering an area of around 1000 km2. 
of the Malda district in West Bengal, India (Figure 1). The ar- 
senic content of the water was measured with the E-Merck ar- 
senic determination kit at each tube well site. Parallel measure- 
ments were also carried out in the laboratory in order to com- 
pare the field kit measurement data with the results obtained 
by laboratory measurements. For laboratory measurements, ea- 
ch time around one quarter litre of water was collected in a 

cleaned polyethylene bag and acidified with supra-pure HCl 
(1 mL in 100 mL of water) and sent to chemical laboratory for 
chemical analysis. 

In this research work Artificial Neural Network (ANN) 
technique has been applied to estimate the arsenic content in 
groundwater based on some geochemical parameters. For the 
past several years, ANNs are being popularly applied as effi- 
cient mathematical tools to represent complex relationships in 
many branches of hydrology (Maier et. al., 2000; Morshed et 
al., 1998; Poff et al., 1996; Rogers et al., 1994; Rogers et al., 
1995; Smith et al., 1997; Zhu et al. 1994). ANN’s flexible struc- 
ture can provide good estimation to various problems in hy- 
drology such as water quality modeling, stream flow forecast- 
ing, groundwater modeling and precipitation forecasting, etc. 
(Carrera et al., 1988; Clair et al., 1996; Coulibaly et al., 2001). 
Yeh (1986) has reported various techniques to solve inverse 
problem of parameter evaluation in groundwater. In particular, 
the back propagation algorithm, as a theoretical framework, has 
led to its wide application in various civil engineering prob- 
lems (ASCE, 2000). 

In the present study, we use data samples collected from 
different arsenic-affected locations of Malda district, West 
Bengal, India, in order to train the ANN for estimating the ar- 
senic contaminant in ground water. The data sample for each 
location comprised values for seven predefined geochemical 
parameters, namely, pH (Acidic-alkalinity ratio), Sp. Cond. 
(specific conductivity), TDS (total dissolved solids), Salinity, 
DO (dissolved oxygen), Eh (redox potential), and Depth of 
the tube well, together with the amount of arsenic contaminant 
observed in the groundwater. Hence, the inputs to the ANN 
were observed data values for the seven geochemical parame- 
ters, while the expected output for the ANN (i.e., expected 
output while training the ANN) was the amount of correspon- 
ding arsenic contaminant observed in the groundwater. The 
main objective of the present study is to obtain realistic ANN 
simulations and to estimate the extent of arsenic contaminant 
at various depths using the trained ANN. 

 
3.1. Back Propagation Algorithm in ANN 

The formal algorithm to train the back propagation neural 
network model is illustrated below and is based on the work 
of Hechst-Nielsen (1990) and Simpson (1990). An implemen- 
tation of this algorithm can be found in Demluth et al. (2000) 
and Masters (1993), while the schematic representing the ar- 
chitecture of the back propagation neural network model can 
be found in Hechst-Nielsen (1990) and Rumelhart et al. (1986). 

1. Randomize the network weights in the range [-1, 1]. 

2. For each pattern    1 2 1( , ) , ,..., ,   1, 2, ..., k k k k
k k mX Y x x x Y k T  . 

i. Present input pattern to processing elements (PEs) in 
the input layer. 

ii. Compute new output values of PEs in the two hidden 
layers and one output layer using: 
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where xh represents the output of m PEs in the input layer, ai, 
bj denote the output of p and q PEs in the two hidden layers, 
respectively, y1

k represents the output of the single PE in out- 
put layer, and i, j and 1 are threshold or bias values of the 
PEs. The variables uih, vji, and w1j represent network weights 
between input and hidden1, hidden1 and hidden2, and hid- 
den2 to output layer, respectively. The functions fL and fT re- 
present variations of the generic sigmoid transfer function 
   1 1 xf x e  . In the two hidden layers we have used 

‘tan-sigmoid’ transfer function (fT), while in the output layer 
we have used a ‘log-sigmoid’ transfer function (fL), the sche- 
matic of which is shown in Figure 2 (Demluth and Beale, 
2000). 

iii. Estimate the “error term” between the computed and 
desired output values of PEs in the output and hidden layers 
using: 

 

1 1 1 1 1(1 )( )k k k kd y y y Y                                 (4) 

 

 2
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                    (6) 

 
where d1, ej, and fi are the errors terms in the output and hidd- 
en layer PEs, respectively. Note that the derivative of log-sig- 
moid function fL is fL(1 − fL), while the derivative of tan-sig- 
moid function fT is (1 − fL

2), which are used in computing the 
error terms in Equations 4 to 6. 

3. Update the threshold values (i.e., i, j, and 1 bias values 
at each PE): 

 

1 1 d          (7)


 j je          (8) 

 
 i if                  (9) 

 
where , , and  are the learning rates. 

Repeat Steps 2 to 3 until the total mean-squared error 
(the mean of the squared differences between the target (Y1

k) 
and the actual output (y1

k) of the PE in output layer taken over 
all T training samples) is sufficiently low, or when the training 
process has reached the maximum number of epochs.  

The error between the target (expected output) and the 
actual output of the PE in output layer for the kth training 

sample is: 

 

1 1 1
k k kE y Y              (10) 

 
The total mean-squared error taken over all T training 

samples is: 
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          (11) 

 

 

a=logsig(n)        a=tansig(n) 
 

Figure 2. Transfer functions used in the MLP. 
 

This algorithm performs a gradient descent technique to 
obtain global minimum of the mean-squared error (MSE) along 
the steepest vector of the error surface defined by Equation 11. 
As the error surface could be hyper-paraboloid in nature, but 
rarely smooth, the solution space contains irregular solution 
vectors, which may sometimes cause the network to settle 
down in a local minimum. The learning procedure attempts to 
modify the network weights towards global minima (i.e., to- 
wards finding the minimum value of MSE given by Equation 
11 for all T training samples) using built-in mathematical terms 
to control the speed (learning parameter) and the momentum.  

A large number of individual runs were taken to deter- 
mine the best possible solution, since the nature of the error 

space could not be determined a priori. Taking large number 
of runs, each starting with a different set of random weights, 
increases the probability of finding global minima on the error 
surface. 

 
3.2. Training and Testing with ANN 

In the present study, we have employed a supervised back 
propagation neural network model comprising four layers 
(7-15-15-1) simulated through the MATLAB@ neural network 
toolbox (Demluth and Beale, 2000). The ‘7-15-15-1’ ANN 
model has seven neurons in the input layer (for the seven geo- 
chemical parameters), fifteen neurons each in the two hidden 
layers, and one neuron (for predicting the arsenic content) in 
the output layer. The two hidden layers neurons used ‘tan-sig- 
moid’ transfer function, while the output layer neuron used a 
‘log-sigmoid’ transfer function. We have used two hidden lay- 
ers in order to increase the learning capability and the genera- 
lization ability of the network. Also, it has been observed that 
an increase in the number of neurons in the hidden layer de- 
creases the RMS error within the neurons (Karri and Frost, 
1999). 
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Table 1. Summary Statistics of the Geochemical Parameters 
of Groundwater in Malda District (No. of Samples: 85) 

Parameter Unit Range Average 

pH - 6.72 8.24 7.1437647 
SC* μ S/cm 437 1450 7.1437647 
TDS mg/l 270 900 530.76471 
Salinity Ppt 0 0.5 0.1905882 
DO mg/l 1.4 9.3 2.6776471 
Eh mV -140 286 -10.964706 
Depth Meter 9.15 45.75 21.116765 
As Ppb 0 800 187.76471 

* specific conductivity 

 

 
Figure 3. Convergence of the training curve for back 
propagation network. 

 

In the training stage, a set of training data with input ex- 
amples and their corresponding desired outputs was prepared. 
The network weights, which eventually store the learned pat- 
terns, were initially set to random values. During the learning 
process, the example inputs were given to the network, and 
the computed and the expected outputs were compared. An er- 
ror term was then calculated, which was used to change the 
network weights in an iterative manner (Simpson, 1990). The 
processing of information was done by the log-sigmoid trans- 
fer function in the output layer. The log-sigmoid function acts 
as a squashing function that generates outputs between 0 and 
1, irrespective of the magnitude of the neuron’s input, which 
may go from negative to positive infinity. The advantage of 
using a log-sigmoid function over a threshold-type function is 
that the former function is continuous and differentiable, whi- 
ch allows the gradient of the error to be used while updating 
the connection weights.  

The input data to the ANN consisted of data samples col- 
lected from different blocks in the Malda district. Each data 
sample comprised measured values for different geochemical 
parameters of the ground water such as pH, Specific conducti- 
vity, TDS, Salinity, DO, Eh, Depth and the arsenic content 
(Table 1). The data samples were divided into two sets: one 
set (called the training set) was used for training the ANN mo- 
del, while the other set was used for testing the trained ANN. 

The training set comprised 60 data samples, while the testing 
set consisted of 25 data samples (Table 2). The data values wi- 
thin each parameter category were normalized to unity at their 
maximum values. 

For measuring the error between the ANN predicted arse- 
nic contaminant values and the corresponding values observed 
from different locations, we have used three different error 
measures, namely, the root mean square error (RMSE), the 
mean absolute error (MAE), and the percent mean relative 
error (PMRE), the expressions for which are as given below: 
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where 1

ky  represents the ANN computed arsenic contaminant 
value, 

1
kY  represents the corresponding value observed in a 

particular location, N is the total number of contaminant va- 
lues used in prediction, and M is the total number of non-zero 
( 1 0kY  ) contaminant values used in the same prediction.  

The RMSE and MAE are measured in the same units as 
data and are therefore easy to understand. Both represent the 
size of a typical error between the contaminant values predict- 
ed by the neural network and the corresponding values obser- 
ved in the selected region (s). However, most researchers pre- 
fer unit-free measures for comparing methods (Armstrong and 
Collopy, 1992). The PMRE, unlike RMSE and MAE, is a unit- 
free measure that gives percent mean relative error between 
the computed and expected values. Moreover, the RMSE has 
low reliability (Chatfield, 1988), nevertheless, it has been wi- 
dely used for comparing forecasting methods (Armstrong and 
Collopy, 1992). The three error measures were taken in order 
to analyze the comparative results from different perspective, 
take care of sensitivities due to small changes in large number 
of data series, and draw reliable and proper conclusions. 

The learning curve in Figure 3 shows how the total 
sum-squared error (SSE) converges in the process of iterative 
learning of the ANN. By total sum-squared error we mean 
∑k(y1

k-Y1
k), where k ranges over all the T training patterns (Y1

k 
is the expected or observed output, while y1

k is the corres- 
ponding output computed by the network), which is similar to 
Equation 11 except for the constant terms. The learning process 
terminates either after a certain number of runs through all the 
training data (each cyclic run through all the training data is 
called an epoch), or when the total sum-squared error reaches 
some predefined target value or goal. In this study, we fixed 
the target SSE (Goal) to 0.01, and the maximum number of 
epochs to 5000. The number of epochs required in achieving 
the target SSE of 0.01 while training the ANN was 2278. Note 
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that many such runs were performed and the best run giving 
the minimum deviation in arsenic predication was taken. 

The performance of the ANN method was judged by com- 
puting its learning accuracy followed by the predicting capa- 
bility of the trained ANN. The graphs in Figure 4 and Figure 5, 
and the entries in Table 3 depict the learning accuracy of the 
ANN. The ANN was trained with data samples from the trai- 
ning set. On completion of the training process, same samples 
from the training set were used to predict the arsenic content 
in the groundwater. As seen from Figure 4, the values predict- 
ed by the trained ANN closely resemble the corresponding va- 
lues observed from different ground locations. The RMSE, 
MAE, and MRE between the ANN predicted and the observed 
arsenic content values were 18.70, 4.77, and 4.27, respectively. 

For example, all the patterns correlating arsenic content at dif- 
ferent location were learnt with a mean relative error (MRE) 
of less than 5 % (between the observed and the ANN learnt 
arsenic content values). 

From Figure 4, the correlation coefficient R2 is 0.9519 
between the observed and ANN predicted arsenic values for 
the training samples, which indicates good learning capability 
of the ANN model. Since the ANN learned input patterns very 
well, increasing the number of geochemical parameters that 
have some correlation with the amount of arsenic content found 
in groundwater could further improve the prediction capabili- 
ty of ANN.  

In order to measure the prediction capability of the ANN, 
the trained ANN was supplied new data samples (samples from  

Table 2. Values of the Geochemical Parameters of Groundwater in Malda District (No. of Samples: 85) 

Sample no. pH SC (μ S/cm) TDS (mg/lit) Salinity (ppt) DO (mg/lit) Eh (mV) As (ppb) Depth (m) 

Training Samples (60) 
9 K3 7.01 792 498 0.2 2 107 210 22.875 
96 P 7.03 680 421 0.1 2.2 -70 <50 21.35 
91 P 7.2 616 380 0 2.9 38 100 21.35 
8 K3 7.06 894 526 0.2 2.1 -26 250 21.35 
89 P 6.72 1354 837 0.5 2.8 70 <50 38.125 
88 P 6.88 437 270 0 2.5 -35 70 38.125 
85 K3 7.06 1450 900 0.5 2.7 -129 150 21.35 
84 K3 7.05 1097 679 0.3 2.6 -67 150 21.35 
83 K3 7.18 832 515 0.2 2.8 -11 60 21.35 
82 K3 6.91 1336 627 0.5 2.5 158 <50 9.15 
81K3 7.1 1123 695 0.3 2.6 84 <50 16.775 
80 K3 7.32 497 308 0 2.4 -93 50 21.35 
7 K3 7.04 940 590 0.2 1.8 -55 800 21.35 
79 K3 7.36 543 336 0 2.3 -100 130 15.25 
78 K3 7.2 1078 667 0.2 2.1 -60 100 41.175 
77 K3 7.16 819 506 0.2 2.7 -52 80 35.075 
76 K3 7.17 795 492 0.2 2.2 -85 70 22.875 
75 K3 7.2 609 377 0 3.1 -12 <50 15.25 
74 K3 7.19 744 461 0.1 2.4 52 <50 21.35 
73 K1 7.12 770 477 0.1 2 -37 200 18.3 
72 K1 7.19 633 392 0.1 2.1 -140 250 25.925 
71K1 7.12 940 582 0.2 2.1 -37 100 18.3 
70 K1 7.15 658 414 0.1 2.5 -64 400 24.4 
6 K3 7.1 701 441 0.1 2.9 47 0 27.45 
69 K1 7.13 732 460 0.1 2.4 -9 <50 21.35 
68 K1 7.09 995 626 0.3 2.3 -21 400 30.5 
67 K1 7.02 1160 729 0.4 3.1 -84 200 21.35 
66 K1 6.96 1398 881 0.5 2.8 -114 200 30.5 
65 K1 7.31 724 455 0.1 2.5 -21 <50 21.35 
64 K1 7.35 634 399 0.1 2.4 -35 60 15.25 
63 K1 7.26 853 536 0.2 2.3 -80 130 15.25 
62 K1 7.4 1554 977 0.6 2.5 -84 500 21.35 
61K1 7.21 825 519 0.2 3 -113 400 21.35 
60 K1 7.17 857 539 0.2 3.5 -90 250 27.45 
5 K1 7.09 858 540 0.2 2.7 167 500 21.35 
59 K1 7.14 738 464 0.1 2.2 -136 250 21.35 
58 K1 7.05 1000 629 0.3 2.5 -123 150 21.35 
57 K1 6.98 1111 699 0.3 2.6 -120 400 15.25 
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Table 2. Continued 

Sample no. pH SC (μ S/cm) TDS (mg/lit) Salinity (ppt) DO (mg/lit) Eh (mV) As (ppb) Depth (m) 

56 K2 7.07 579 364 0 2.6 -101 210 21.35 

55 K2 7.09 760 478 0.1 2.8 -101 250 21.35 

54 K2 7.1 829 521 0.2 2.6 -67 300 15.25 

53 K2 7.02 986 620 0.3 2.4 -116 200 18.3 

52 K2 7.05 1153 725 0.4 2.5 -65 450 21.35 

51K2 7.15 825 517 0.2 3.4 -119 200 15.25 

50K2 7.14 927 582 0.2 2.3 -37 80 15.25 

4 K1 7.13 945 595 0.2 2.3 99 250 15.25 

49 K2 7.13 791 498 0.2 2.6 -80 350 21.35 

48 K2 7.36 670 421 0.1 2.8 -3 <50 21.35 

47K1 7.25 815 512 0.3 2.7 12 <50 27.45 

46 K1 7.06 1063 669 0.3 2.4 -80 70 15.25 

45 K1 7.1 1004 632 0.3 2.3 -120 200 18.3 

44 K1 7.36 1019 641 0.3 2.5 -54 60 27.45 

43 E 8.24 494 309 0 9.3 184 100 15.25 

42 R2 7.38 503 316 0 2.1 -53 <50 24.4 

41 R1 7.02 735 462 0.1 2.3 -120 80 18.3 

40 R1 6.9 1410 886 0.5 2.2 64 <50 15.25 

3 K1 6.91 1326 835 0.5 3 286 300 18.3 

39 M 7.38 769 483 0.1 3.1 124 <50 21.35 

38 M 7.04 1358 854 0.5 3.5 182 <50 21.35 

37 M 6.98 952 598 0.2 2.6 160 <50 24.4 

Testing Samples (25) 

35 E 7.13 546 343 0 2.5 -114 130 15.25 

34 E 6.97 903 568 0.2 2.4 55 <50 15.25 

33 E 7.12 782 492 0.1 2.7 25 <50 21.35 

32 E 6.97 938 589 0.2 2.9 106 <50 30.5 

31 E 6.92 866 545 0.2 2.1 160 <50 21.35 

29M 7.08 783 493 0.1 3 -82 500 21.35 

28 M 6.99 1356 853 0.5 2.3 -54 350 15.25 

27 M 7.2 686 431 0.1 2 -122 500 21.35 

26M 7.13 744 468 0.1 2.5 -114 500 21.35 

25 M 7.27 599 376 0 2 -70 100 21.35 

24 M 7.45 676 424 0.1 3.6 165 200 21.35 

23 M 7.07 837 526 0.2 3.2 -117 600 27.45 

22 M 7.2 772 454 0.1 1.9 -83 650 15.25 

21 M 7.19 703 442 0.1 2.4 160 60 45.75 

20 M 7.2 635 400 0.1 3.2 -14 500 21.35 

19 M 7.1 784 493 0.1 2 -71 90 15.25 

18 E 7.09 770 485 0.1 1.4 -87 800 21.35 

17 E 7.56 553 347 0 5.7 197 60 15.25 

16 E 7.16 949 596 0.2 2.4 146 70 21.35 

15 E 7.12 833 521 0.2 4.1 153 60 30.5 

14 E 7.38 564 354 0 5.5 161 80 27.45 

13 E 6.92 696 437 0.1 1.6 57 <50 36.6 

12 E 7.13 785 493 0.1 2.9 -67 200 21.35 

11 E 7.22 789 497 0.1 1.7 19 100 15.25 

10 E 7.11 992 624 0.3 2.2 44 200 21.35 
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the test data set that it had not seen before) for computing the 
arsenic content at different locations. The graphs in Figure 6 
and Figure 7, and the entries in Table 4 depict the prediction 
accuracy of the trained ANN model. The line graphs in Figure 
6 depict arsenic values computed by the trained ANN and those 
obtained during actual field trial. Although both curves do not 
match as closely as those in Figure 4, the trained ANN does 
show a close trend towards correct predicting of the arsenic 
values. Table 4 displays the actual values of the arsenic con- 
tent as predicted by the trained ANN and those observed dur- 
ing the field trial. Note that some entries in Table 4 depict va- 
lues of arsenic content to be less that 50 ppb (< 50) at certain 
locations. The ANN was trained with an average value of 25 
ppb for all such entries that were present in the training set. 
From Table 4, it is observed that around 68% arsenic content 
values were predicted reasonably well with less that 50% error. 
The RMSE, MAE, and MRE between the ANN predicted and 

the observed arsenic content values were 184.11, 114.29, and 
42.90, respectively, with a reasonably good agreement having 
correlation coefficient R2 as 0.6672 (Figure 7). 

 

 

Figure 4. Patterns correlating arsenic content at different 
locations learned by the ANN. 
  

 
Figure 5. Relation between observed & ANN predicted 
arsenic values for the training data. 

Table 3. Learned Sample Prediction by the ANN 
Observed ANN  AE* % RE 
210.00 210.10 0.10 0.05 
25.00 32.68 7.68 30.70 
100.00 0.11 99.89 99.89 
250.00 250.08 0.08 0.03 
25.00 24.84 0.16 0.63 
70.00 70.20 0.20 0.28 
150.00 151.26 1.26 0.84 
150.00 152.39 2.39 1.59 
60.00 58.91 1.09 1.82 
25.00 24.54 0.46 1.83 
25.00 6.20 18.80 75.19 
50.00 55.13 5.13 10.26 
800.00 778.26 21.74 2.72 
130.00 128.72 1.28 0.98 
100.00 100.84 0.84 0.84 
80.00 80.00 0.00 0.00 
70.00 73.00 3.00 4.28 
25.00 33.53 8.53 34.11 
25.00 29.65 4.65 18.60 
200.00 199.60 0.40 0.20 
250.00 249.74 0.26 0.10 
100.00 100.92 0.92 0.92 
400.00 398.99 1.01 0.25 
0 0.24 0.24 0 
25.00 23.24 1.76 7.05 
400.00 400.63 0.63 0.16 
200.00 200.33 0.33 0.16 
25.00 23.17 1.83 7.33 
60.00 61.90 1.90 3.17 
130.00 129.95 0.05 0.04 
500.00 499.94 0.06 0.01 
400.00 400.17 0.17 0.04 
250.00 250.12 0.12 0.05 
500.00 499.69 0.31 0.06 
250.00 249.88 0.12 0.05 
150.00 149.93 0.07 0.05 
400.00 398.18 1.82 0.46 
210.00 209.18 0.82 0.39 
250.00 250.25 0.25 0.10 
300.00 300.27 0.27 0.09 
200.00 215.46 15.46 7.73 
450.00 450.09 0.09 0.02 
200.00 199.97 0.03 0.02 
80.00 76.61 3.39 4.24 
250.00 251.19 1.19 0.48 
350.00 349.88 0.12 0.04 
25.00 8.62 16.38 65.54 
25.00 20.84 4.16 16.64 
70.00 68.37 1.63 2.32 
200.00 185.27 14.73 7.36 
60.00 60.00 0.00 0.01 
100.00 0.01 99.99 99.99 
25.00 20.57 4.43 17.73 
80.00 76.98 3.02 3.78 
25.00 23.60 1.40 5.59 
300.00 299.93 0.07 0.02 
25.00 1.74 23.26 93.03 
25.00 27.37 2.37 9.50 
25.00 25.44 0.44 1.76 

AE: Absolute error; RE: Relative error.  

y = 1.0171x - 12.316 
R 2 = 0.9519 
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Figure 6. The arsenic content at new locations as predicted by 
the trained ANN. 
 
Table 4. Observed Versus Predicted Arsenic Content (ppb) for 
25 Test Data Samples 

Observed  ANN AE* % RE** 

130.00 138.47 8.47 6.51 
(< 50) 25.00 (< 50) 9.26 0.0 0.0 
(< 50) 25.00 (< 50) 2.05 0.0 0.0 
(< 50) 25.00 (< 50) 13.44 0.0 0.0 
(< 50) 25.00 (< 50) 5.83 0.0 0.0 
500.00 317.18 182.82 36.56 
350.00 186.51 163.49 46.71 
500.00 438.72 61.28 12.26 
500.00 135.20 364.80 72.96 
100.00 79.46 20.54 20.54 
200.00 11.21 188.79 94.39 
600.00 325.18 274.82 45.80 
650.00 420.39 229.61 35.33 
60.00 1.63 58.37 97.29 
500.00 275.89 224.11 44.82 
90.00 63.21 26.79 29.77 
800.00 164.63 635.37 79.42 
60.00 12.30 47.70 79.50 
70.00 52.27 17.73 25.33 
60.00 122.68 62.68 104.47 
80.00 0.78 79.22 99.03 
(< 50) 25.00 (< 50) 1.36 0.0 0.0 
200.00 145.26 54.74 27.37 
100.00 26.94 73.06 73.06 
200.00 117.14 82.86 41.43 
Mean - 114.29 42.90 

*Absolute error; **Relative error.  

4. Arsenic Contaminant Prediction through Other 
Prediction Methods 

In this section we present two other methods for arsenic 
content prediction, namely, multiple linear regression and act- 
ive set support vector regression and compare their prediction 

results with those of the ANN model. 
 

 
Figure 7. Relation between observed & ANN predicted 
arsenic values for the test data. 

 

4.1. Prediction using Multiple Linear Regression (MLR) 

Multiple linear regression attempts to model the relation- 
ship between two or more independent variables (xi) and a de- 
pendent variable (y) by fitting a linear equation to the observed 
data (Kutner et. al, 2004). In this research work, the independ- 
ent variable y represents the arsenic content, while the depen- 
dant variables xi (i = 1, …, 7), represent the seven geochemi- 
cal parameters as stated above. The multiple linear regression 
equation computed using the same data samples as in the train- 
ing set of the ANN model is as follows: 

 
y = – 9.07 x1 – 0.58 x2 + 0.93 x3 + 245.88 x4 – 1.48 x5 –  0.33x6 

+ 0.09 x7 + 172.37          (13) 
 
where, the independent variable y represents the arsenic con- 
tent, and the dependant variables xi, i = 1, …, 7, represent the 
seven geochemical parameters such as pH, specific conducti- 
vity, total dissolved solids (TDS), salinity, dissolved oxygen 
(DO), redox potential (Eh), and depth of the tube well water, 
respectively. Using Equation 13 and the same test data samples 
as in the ANN model, we predict the arsenic contaminant va- 
lues for the test data. The predicted values of the arsenic con- 
tent using multiple linear regression model are displayed in 

Table 5. 
 

4.2. Prediction using Active Set Support Vector Regression 
(ASVR)  

In recent years, the use of support vector machines 
(SVMs) on various classification and regression problems has 
become increasingly popular. SVMs can be applied to both 
classification (Cristianini and Taylor, 2000) and regression 
problems (Kutner et al., 2004). In the classification case, we 
try to find an optimal hyper plane that separates two classes. 
In regression, the goal is to estimate an unknown continuous- 
valued function based on a finite number set of noisy samples. 
The SVM algorithm is a nonlinear generalization of the ge- 
neralized portrait algorithm (Vapnik and Lerner, 1963). Active 
set support vector regression is an active set strategy to solve 
a reformulation of the standard support vector regression pro-

y = 0.465x + 13.409

R2 = 0.6672

0

200

400

600

0 200 400 600 800 1000

Observed

P
re

di
ct

ed
 



B. Purkait et al. / Journal of Environmental Informatics 12(2) 140-149 (2008) 

 

148 

blem. The algorithm consists of solving a finite number of lin- 
ear equations with a dimensionality equal to the number of trai- 
ning data samples to be approximated (Musicant, 2004). We 
have used the ASVR program as given in (Musicant and Fein- 
berg, 2002) to approximate the training data with regression 
surface and used this to predict the arsenic content. The pre- 
dicted values of the arsenic content using ASVR model are dis- 
played in Table 5. 

 
4.3. Comparison of the Three Predictions Methods 

The entries in Table 5 depict predicted arsenic contami- 
nant values and the corresponding prediction errors for the 
three methods, while Figure 8 displays the comparative line 
graphs of the prediction values. The RMSE, MAE, and MRE 
between the predicted and the observed arsenic contaminant 
values computed by the three methods are displayed in Table 
6. Both MLR and ASVR show identical prediction values, 
while the prediction results of the ANN are relatively better 
since the ANN model can model the non-linearity in the data 
better than the other two models. Note that the prediction cur- 
ves of both MLR and ASVR prediction methods in Figure 8 
almost overlap each other. The RMSE, MAE, and MRE va- 
lues for the MLR and ASVR methods are also identical, while 
for the ANN model they have relatively lower values.  

Although it has been claimed that the support vector ma- 

chines regression (SVR) technique provides a very attractive 
alternative to the current optimization methods (such as artifi- 
cial neural networks) used in the inversion problems (Durbha 
et al., 2007), the ASVR, a variation of the SVR, did not pro- 
vide expected prediction results in our study. 

 

 
Figure 8. Arsenic contaminant values predicted by the three 
methods. 

Table 5. Observed Versus Predicted Arsenic Contaminant Values for 25 Test Data Samples Using Three Methods 

Observation 
(ppb) 

ANN 
prediction 

(ppb) 

MLR 
prediction 

(ppb) 

ASVR 
prediction 

(ppb) 

Absolute error (ppb)  Relative error (%) 

ANN MLR ASVR  ANN MLR ASVR 

130.00 138.47 147.85 148.43 8.47 17.85 18.43  6.51 13.73 14.17 
25.00 (< 50) 9.26 145.60 146.26 0.0 120.60 121.26  0.0 482.39 485.02 
25.00 (< 50) 2.05 130.44 140.94 0.0 105.44 115.94  0.0 421.75 463.76 
25.00 (< 50) 13.44 132.21 140.89 0.0 107.21 115.89  0.0 428.83 463.57 
25.00 (< 50) 5.83 114.30 110.64 0.0 89.30 85.64  0.0 357.21 342.56 

500.00 317.18 165.54 175.71 182.82 334.46 324.29  36.56 66.89 64.86 
350.00 186.51 256.85 250.49 163.49 93.15 99.51  46.71 26.62 28.43 
500.00 438.72 177.60 176.65 61.28 322.40 323.35  12.26 64.48 64.67 
500.00 135.20 175.63 181.41 364.80 324.37 318.59  72.96 64.87 63.72 
100.00 79.46 134.81 145.81 20.54 34.81 45.81  20.54 34.81 45.81 
200.00 11.21 78.85 79.06 188.79 121.15 120.95  94.39 60.57 60.47 
600.00 325.18 202.55 198.50 274.82 397.45 401.50  45.80 66.24 66.92 
650.00 420.39 134.61 144.99 229.61 515.39 505.01  35.33 79.29 77.69 
60.00 1.63 93.25 99.51 58.37 33.25 39.51  97.29 55.42 65.86 
500.00 275.89 141.46 133.16 224.11 358.54 366.84  44.82 71.71 73.37 
90.00 63.21 160.77 170.21 26.79 70.77 80.21  29.77 78.64 89.12 
800.00 164.63 169.54 178.50 635.37 630.46 621.50  79.42 78.81 77.69 
60.00 12.30 37.66 43.58 47.70 22.34 16.42  79.50 37.23 27.36 
70.00 52.27 111.69 119.54 17.73 41.69 49.54  25.33 59.56 70.76 
60.00 122.68 111.50 107.75 62.68 51.50 47.75  104.47 85.83 79.58 
80.00 0.78 55.22 63.14 79.22 24.78 16.86  99.03 30.97 21.07 

25.00 (< 50) 1.36 126.98 127.04 0.0 101.98 102.04  0.0 407.92 408.16 
200.00 145.26 159.19 170.34 54.74 40.81 29.66  27.37 20.41 14.83 
100.00 26.94 131.65 143.24 73.06 31.65 43.24  73.06 31.65 43.24 
200.00 117.14 175.09 168.22 82.86 24.91 31.78  41.43 12.45 15.89 
Mean    114.29 160.65 161.66  42.90 125.53 129.14 
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Table 6. Error Measures between the Predicted and the 
Observed Arsenic Contaminant Values Computed by the 
Three Methods 

Method RMSE MAE MRE 
ANN 184.11 114.29 42.90 
MLR 233.72 160.75 125.53 
ASVR 232.75 161.66 129.14 

5. Conclusions 

An ANN-based methodology to determine the amount of 
arsenic contaminant in groundwater was presented and tested 
using the actual field data. The methodology is based on the 
idea that although the amount of arsenic contaminant spreads 
across different locations changes over time due to various 
factors, the variation of contaminant values is interrelated and 
can be well estimated through ANN simulations. A four-layer 
(7-15-15-1) feed-forward back propagation ANN with a nonli- 
near differentiable tan-sigmoid and log-sigmoid transfer func- 
tion in the hidden layers and the output layer, respectively, 
and a variable learning rate has proved to be useful than the 
traditional modeling of arsenic contaminant in groundwater. 
The ANN model learned the patterns used for predicting the 
arsenic content very well. It could accurately compute the 
amount of arsenic content for the data samples that it had 
learnt. For new locations, the prediction of arsenic content 
using the ANN model and the amount of arsenic actually ob- 
served at such locations during the field trial showed accept- 
able agreement. The paper also presented two other methods 
for arsenic content prediction; namely, multiple linear regress- 
ion and active set support vector regression. Amongst the three 
methods, the ANN model exhibited better prediction results 
for predicting the arsenic contamination in groundwater.  
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