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ABSTRACT. Mitigating global warming problems initially involves reducing greenhouse gas (GHG) emissions, therefore the uncer-
tainty of GHG emission estimates needs to be assessed concisely. Although the uncertainty of GHG emission estimates is generally 
evaluated using classical confidence interval, quantifying the uncertainty based on non-normal GHG emission estimates or small da-
taset may lead to a significant bias. Using bootstrap confidence intervals is an effective means of reducing such a bias. This study pre-
sents a procedure for constructing four bootstrap confidence intervals to assess the uncertainty of GHG emission estimates for three 
non-normal distributions (namely, Weibull, Gamma and Beta). These bootstrap confidence intervals are standard bootstrap (SB) 
confidence interval, percentile bootstrap (PB) confidence interval, Bias-corrected percentiles bootstrap (BCPB) confidence interval and 
bias-corrected and accelerated (BCa) confidence interval. The sensitivity of bootstrap intervals for emission data is examined under 
various combinations of sample size and parameters of underlying non-normal distributions using three indices: coverage performance, 
interval mean, and interval standard deviation. Simulation results indicate that the bootstrap confidence intervals for assessing the un-
certainty of emission estimates are highly applicable with small sample size and the data distribution is non-normal. Compared with 
the classical confidence interval, bootstrap confidence intervals have smaller interval mean and smaller interval standard deviation for 
small sample size under non-normal distributions. This study recommends BCa confidence interval to assess the uncertainty of the 
emission estimates as long as sample size is 15 or more and the distribution is non-normal. A case study with emission data of the 
High-Bleed Pneumatic controllers demonstrates the effectiveness of the proposed procedure 
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1. Introduction

Human activities in recent decades have dramatically influ- 
enced the atmospheric changes in terms of the amount of green- 
house gases (GHG). Global warming is caused by the increa- 
sing GHG emissions emitted into the atmosphere. Global war- 
ming have the heterogeneous effects on the nations in the world; 
these effects will include changes in rainfall patterns, changes 
in agricultural yields, the continued melting of glaciers and spe- 
cies extinctions, increase of coastal erosion, seasonal changes 
in some regions, and emergence of new infectious diseases 
(IPCC, 2007; Kumar et al., 2012; Pinto et al., 2008; Riebeek, 
2010). These impacts have alerted scientists worldwide to act 
aggressively in controlling GHG emissions. Numerous studies 
have attempted to reduce GHG emissions and their effects (e.g. 
Erickson et al., 2012; Millar et al., 2012; Shen et al., 2012; 
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Mudhoo et al., 2013; Watson et al., 2013). The Kyoto Protocol 
was developed by United Nations Framework Convention on 
Climate Change to reduce GHG emissions (UNFCCC, 1997). 
Notably, implementing the Kyoto protocol requires high qual-
ity GHG inventory data. However, inventory uncertainties, even 
when prepared according to Intergovernmental Panel on Cli-
mate Change (IPCC) guidelines and good practice, are high for 
inventory applications (IPCC, 2006). Random errors and biases 
in emission inventories may lead to erroneous conclusions on 
emission trends, source apportionment, and compliance of emi- 
ssion (Frey et al., 1999). Uncertainty information is essential for 
characterizing the quality of emission inventory. The quality of 
the GHG inventory can be improved by accurately quantifying 
the uncertainty of the emission estimates.  

Emission estimates are made by multiplying an appropri-
ate emission factor with activity data. The two major types of 
uncertainty associated with emission estimates are model uncer- 
tainty and parameter uncertainty (GHG Protocol, 2003; IPCC, 
2006; Rypdal and Winiwarter, 2001). Model uncertainty refers 
to the uncertainty associated with the models (i.e. mathematical 
equations) which characterize the relationships between vari-
ous parameters (or inputs such as e.g. activity data, emission 
factors or other parameters) and emission processes (GHG Pro- 
tocol, 2003). Model uncertainty arises when the incorrect ma- 
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thematical model or inappropriate parameters (i.e. inputs) in 
the model were used (GHG Protocol, 2003; IPCC, 2006; Ryp- 
dal and Winiwarter, 2001). Quantifying model uncertainty of the 
emission esti- mates is difficult in practice, owing to the com-
plexity in developing appropriate estimation models (IPCC, 
2006). Parameter uncertainty refers to the uncertainty associated 
with quantifying the parameters used as inputs in the estima-
tion model. Parameter uncertainty arises owing to lack of pre-
cise inputs (GHG Protocol, 2003; IPCC, 2006). Parameter un- 
certainties can be evaluated through statistical analysis and 
expert judgment (IPCC, 2001). Parameter uncertainty is the pri- 
mary type and source of uncertainty associated with emission 
estimates (GHG Protocol, 2003; IPCC, 2006). Therefore, quan- 
tifying parameter of emission estimates is often considered 
when investigating the uncertainty in the emission inventories. 

According to IPCC guidelines, the uncertainties are gene- 
rally expressed in the uncertainty range which is described by 
95% confidence interval within which the underlying value of 
an uncertainty quantity is thought to lie (IPCC, 2006; Zhao et 
al., 2011; EMEP/EEA, 2013). Classical methods, expert judg- 
ment and utilization recommendations were recommended by 
IPCC to express the uncertainty of GHG emission estimates 
(IPCC, 2006). Classical methods (e.g., Maximum Likelihood 
Estimation, Least Square Estimation, Method of Moments and 
95% confidence interval) require sufficiently large data to esti- 
mate the uncertainty and the distribution of data must be nor-
mal as well. When data is lacking, the uncertainty is estimated 
based on expert judgment. Utilization recommendations can be 
adopted when both classical methods and expert judgment fail. 
When the sample size is small and data distribution is not nor- 
mal for emission estimates, constructing a 95% confidence in- 
terval to quantify the uncertainty of emission estimates using 
classical methods is inappropriate. In this case, bootstrap me- 
thod can be utilized as an alternative approach to the classical 
method. The bootstrap method is a computationally intensive 
statistical approach to make inferences about population based 
on small dataset without making distributional assumptions.  

The bootstrap method has two different types which are 
referred as the “non-parametric” and “parametric” approaches 
(Efron and Tibshirani, 1993; Kyselý, 2010). The parametric 
bootstrap method generates the bootstrap observations by a pa- 
rametric distribution. In parametric bootstrap method, a speci-
fied probability distribution is fitted to the original dataset in 
advance. The non-parametric bootstrap method resamples the 
observations from original sample. Studies based on bootstrap 
method have attempted to quantify the uncertainty in emission 
factors and inventories (Frey and Bammi, 2002; Frey et al., 
1999; Frey and Rhodes, 1996a; Frey and Zhao, 2004; Rhodes 
and Frey, 1997). In the case of an uncensored dataset, confi-
dence intervals constructed using parametric bootstrap simu-
lation was presented to quantify the uncertainty of emission es- 
timates (Frey and Rhodes, 1996b). Similar studies were attem- 
pted on an emission dataset from lean burn engines and censored 
mercury emission factor dataset to quantify the uncertainty of 
emission estimates (Frey and Li, 2003; Zhao and Frey, 2003; 
Zhao and Frey, 2006). Tong et al. (2012) constructed confidence 
intervals using the non-parametric bootstrap method to quan-

tify the uncertainty of GHG emission estimates under normal, 
log-normal and uniform distributions (Tong et al., 2012). Their 
results suggested sample size greater than or equal to 9 for esti- 
mating the uncertainty of emission estimates using bootstrap 
confidence intervals. In real situation, most of emission estima- 
tes cannot be adequately described by the normal distribution. 
However, their study considered only two non-normal distri-
butions (log-normal and uniform). The log-normal distribution 
is a tail-heavy distribution and is used when the uncertainties 
of emission estimates are expected to be positively skewed. 
The uniform distribution is used to describe an equal likelihood 
of obtaining any value within a range. It is often utilized to re- 
present physically-bounded quantities such as fraction that 
must vary between 0 and 1 (Rhodes and Frey, 1997; EMEP/EEA, 
2013). These two non-normal distributions may not cover most 
of the skewed distributions. The Weibull and Gamma have 
approximately similar properties to log-normal but are less 
tail-heavy than log-normal. The Weibull distribution is gener-
ally used for describing highly asymmetrical uncertainties of 
emission estimates (Monni and Syri, 2004). The Gamma distri- 
bution is useful in describing large and highly skewed uncer-
tainties of emission estimates. The Beta distribution is defined 
on the continuum between 0 and 1and can be either positively 
or negatively skewed. It is used mostly in cases where the va- 
lue used in the inventory seems to be too high (Monni and Syri, 
2004). Therefore, this study considers these three skewed dis- 
tributions (i.e., Weibull, Gamma and Beta) to obtain more ge- 
neral and comprehensive conclusions, when using the non-pa- 
rametric bootstrap method. 

This study proposes a procedure to quantify the uncertainty 
of emission estimates using bootstrap resampling method and 
four bootstrap confidence intervals. Based on the three above- 
mentioned non-normal distributions with different parameter 
combinations, non-normal cases are simulated to meet real- 
world situations. The performance of the proposed bootstrap 
confidence intervals is evaluated using three indices (i.e. cov-
erage performance, interval mean and interval standard devia-
tion). Furthermore, this study attempts to find an appropriate 
sample size when constructing bootstrap confidence intervals 
for quantifying uncertainty of emission estimates. 

The rest of this paper is organized as follows. Section 2 in- 
troduces the concept of bootstrap method and bootstrap con-
fidence intervals. Section 3 simulation procedure for estimat-
ing the uncertainty of non-normal GHG emission estimates 
using bootstrap confidence intervals. Section 4 summarizes the 
results of sensitivity analysis of bootstrap confidence intervals 
to demonstrate the effectiveness of the proposed method. Sec-
tion 5 describes a case study to demonstrate the effectiveness 
of the bootstrap construct a confidence interval for the emission 
estimates. Conclusion is finally drawn in Section 6. 

2. Concept of Bootstrap Method and Bootstrap Con-
fidence Intervals 

Efron introduced the bootstrap method which is a data- 
based simulation method for statistical inference (Efron, 1979). 
In particular, the bootstrap method relies on resampling with 
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replacement from the given sample and calculating the required 
statistic from these repeated samples. The values of the statistic 
from the repeated sampling can then be used to generate stand- 
ard errors and confidence intervals for the statistic. Advanta-
geously, bootstrap method does not rely on distributional ass- 
umptions about the underlying population. 

Suppose  1 2, , ..., nx x x is an original sample of size n ran- 
domly taken from a process. Let  * * *

1 2, , ..., nx x x  be a bootstrap 
sample of size n drawn (with replacement) from the original 
sample. Hence, a total of nn resamples are possible. Bootstrap 
sampling is equivalent to sampling with replacement from the 
empirical population distribution. The bootstrap estimate is cal- 
culated for each bootstrap sample, and the subsequent empiri- 
cal distribution is referred to as the bootstrap distribution of the 
statistic. At least 1000 bootstrap resamples are recommended 
as sufficient to obtain reasonably accurate confidence interval 
estimates for the parameter (Efron and Tibshirani, 1993).  

Assume that the population parameter θ is estimated using 
a random sample. The bootstrap estimate of θ is represented by 

*θ̂ . The resampling procedure is repeated B times, where B > 
1000. The B bootstrap estimates 1 2

ˆ ˆ ˆ, , ...,* * *
Bθ θ θ can be calculated 

from B resamples. Four bootstrap confidence intervals are the 
standard bootstrap (SB) confidence interval, percentile boo- 
tstrap (PB) confidence interval, bias-corrected percentile boots- 
trap (BCPB) confidence interval and bias-corrected accelerated 
percentile bootstrap (BCa) confidence interval, as developed 
by Efron (Efron, 1981; Efron, 1982), Efron & Gong (Efron and 
Gong, 1983), Efron & Tibshirani (Efron and Tibshirani, 1986), 
and Efron (Efron, 1987). The formulas used to calculate these 
intervals are detailed below: 

1. SB confidence interval

The mean of B bootstrap estimates *ˆ  ( 1,2, , )iθ i B   can
be computed as follows: 

* *

1

1ˆ ˆ
B

i

i
B

 


 

The standard deviation of B bootstrap estimates *ˆ
iθ  (i = 1,

2, …, B) can be computed as follows: 

*

1/2
 2* *

ˆ

1

ˆ ˆ ˆ / ( 1)
B
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when the distribution of *θ̂  is approximately normal, the (1 - 
α)100% SB bootstrap confidence interval for θ can be com-
puted as     ˆ ˆ1 2 1 2

ˆ ˆˆ ˆ
* *

* *
α αθ θ

θ z S , θ z S   , where,  1 α 2z   is
the  th1 2α percentile of the standard normal distribution.
Despite the relative ease in calculating the SB confidence inter- 
val, normality assumption is required on the bootstrap distribu- 
tion of *ˆ

iθ  (Efron, 1982).

2. PB confidence interval

PB method is also called bootstrap-p method. By ascend-
ing the *ˆ  ( 1, 2, , )iθ i B  , an ordered estimate  ˆ*θ i (i = 1,
2, …, B) can be obtained, of which the (α/2)th percentile and the 

(1 - α/2)th percentile are the left and right endpoints of the 
confidence interval for θ, respectively. The (1 - α)100% PB con- 
fidence interval for θ can be computed as follows:

      2 1 2
ˆ ˆ* *

α B α B
θ , θ



If the distribution of *̂ is not normal, the PB confidence inter- 
val is preferable (Moore et al., 2008). 

3. BCPB confidence interval

The bootstrap empirical distribution may occasionally be 
asymmetric, resulting in a bias in the confidence interval. The 
PB confidence interval is thus corrected (Efron, 1981).  

First, P0 is computed using the bootstrap distribution of 

 ˆ*θ i (i = 1, 2, …, B) as follows:

    *
0

ˆ ˆPr , 1, 2, ...,P i i B     

Next, z0 is computed to measure the bias of bootstrap distribu- 
tion as follows: 

 1
0 0z P 

where  1 . is the inverse cumulative standard normal distri- 
bution. 

The bias-corrected percentiles PL and PU are computed, 
respectively, as given in the following formulas: 

 0 1 2Φ 2L αP z z  

 0 1 2Φ 2U αP z z  

where  .  is the cumulative standard normal distribution. 
Thus, the (1 - α)100% BCPB confidence interval for θ can be
computed as     * *ˆ ˆ,L UP B P B  .

4. BCa confidence interval

As an improved version of PB confidence interval, the BCa 
confidence interval can accelerate the correction of the estima- 
ted error of biased data in the PB confidence interval (Efron, 
1982). The PL and PU in PB confidence intervals are revised as  

 
0

0
01

α
L

α

z z
P z

a z z

 
      

 

 
0 1

0
0 11

α
U

α

z z
P z

a z z




 
      

where    * * 3 * * 2 3/2

1 1
ˆ ˆˆ ˆ( ) / 6[ ( ) ]

B B

i i
a θ i θ i 

 
    . 

Fan
Typewriter
(1)

Fan
Typewriter
(2)

Fan
Typewriter
(3)

Fan
Typewriter
(4)

Fan
Typewriter
(5)

Fan
Typewriter
(6)

Fan
Typewriter
(7)

Fan
Typewriter
(8)

Fan
Typewriter
(9)



L. I. Tong et al. / Journal of Environmental Informatics 28(1) 61-70 (2016) 

64 

Here, z0 and a are the bias-correction and acceleration 
constants, respectively. Thus, the (1 - α)100% BCa confidence 
interval for θ is obtained as     * *ˆ ˆ,L UP B P B  . Notably, if
z0 and a are zero, then the BCa confidence interval is the same 
as the PB confidence interval. Efron and Tibshirani (Efron and 
Tibshirani, 1993) recommended the BCa confidence intervals 
for general use, despite the lack of a standard rule for identifying 
which method has the best confident interval (Zheng, 2002). 

3. Simulation Procedure for Estimating the Uncer-
tainty of Non-normal GHG Emission Estimates Us-

ing Bootstrap Confidence Intervals 

The sample size of emission data obtained is generally sm- 
all. In this case, the classical 95% confidence interval may lead 
to a significant bias, if the distribution of emission data is non- 
normal. The bootstrap method is an alternative approach to the 
classical method. The bootstrap method has two different types 
which are “non-parametric” and “parametric” approaches. In 
parametric bootstrap method, a probability distribution is fitted 
to the original dataset in advance. However, fitting a distribu-
tion to emission data of small sample size is difficult. Moreover, 
the estimates of the parameters of the fitted distribution may 
have large estimation error. Thus, the parametric bootstrap me- 
thod is sometimes not applicable. Non-parametric bootstrap 
method can be utilized to quantify the uncertainty of emission 
estimates. The procedure of estimating the uncertainty of GHG 
emission estimates using non-parametric bootstrap method is 

described as follows. Collect a set of emission data (x1, x2, …, 
xn) (Original sample). Generate a total of B (B > 1000) boot-
strap resample  * * *

1 2, , ..., nx x x  from the original sample with 
replacement and compute *

ix  for each bootstrap resample (i =
1, 2, …, B). Construct the (1 - α)100% bootstrap confidence 
intervals for the true mean of emission estimates. 

To verify the effectiveness of quantifying uncertainty of 
GHG emission estimates using non-parametric bootstrap me- 
thod, three non-normal distributions (namely, Weibull, Gamma 
and Beta) were considered in this study. These distributions are 
generally used to represent the variability in probabilistic asse- 
ssment regarding estimation of the uncertainty of emission esti- 
mates (IPCC, 2006; EMEP/EEA, 2013). Therefore, these distri- 
butions were used to generate population emission data. The 
simulation procedure for analyzing the accuracy and sensitivity 
of the bootstrap confidence interval with various combinations 
of sample size and parameters under three non-normal distri-
butions is described as follows. The combinations of parame-
ters are presented in Table 1. In Table 1, α represents the shape 
parameter and β represents the scale parameter.  

(i) Generate emission data using Monte Carlo method by 
choosing a parameter set for each non-normal distribution in 
Table 1;  

(ii) Collect a random sample of size n (x1, x2, …, xn) from 
the simulated data (original sample); 

(iii) Generate bootstrap resample dataset B = 1000 times 
(with replacement) from the original sample each with size n 
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Figure 1. Density Plots for various combinations of parameters (α, β) of Weibull, Gamma and Beta distributions. 

Table 1. The Parameters of Non-normal Distributions Weibull, Gamma and Lognormal 

Name of Distribution Parameters Mean Standard Deviation 

Weibull(α, β) α = 10, β = 25 
α = 25, β = 25 

23.7838 
24.4610 

8.1878 
1.4900 

Gamma(α, β) α = 2, β = 1 
α = 1, β = 1 

2 
1 

1.4142 
1 

Beta(α, β) α = 0.5, β = 0.5 
α = 1.0, β = 0.5 

0.5 
0.6667 

0.1250 
0.0889 
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 * * *
1 2, , ..., nx x x ; 

(iv) Compute the mean *
ix  from n sample (i = 1, 2, …,

B); 

(v) Construct (1 - α)100% confidence interval for the true 
mean of emission estimates by using the four Bootstrap meth-
ods; and  

(vi) Repeat (ii) – (v) N = 2000 times to obtain sets of boots- 
trap confidence intervals. With these N intervals, the coverage 
performance index, interval mean and standard deviation are 
calculated for sensitivity analysis of bootstrap intervals. 

The above simulation procedure was repeated for each set 
of parameters with various sample size n (n = 5, 6,…,30) for 
each of the non-normal distributions. These distributions can 
have various shapes (such as skewed, very flat or steep) depen- 
ding on their parameters. For having a general conclusion of 
non-normal distributions, this study considers parameter values 
for the most extreme cases of non-normal distributions. Figure 
1 shows the density plots of the assumed distributions for va- 
rious values of parameters (α, β) in Table 1.  

The performance of four bootstrap confidence intervals 
for GHG emission estimates was evaluated using the three 
indices (Chou et al., 2006; Tong et al., 2008; Tong et al., 2012): 

1. Coverage performance index: This index represents the per- 
centage of times that the actual emission falls into the boo- 
tstrap confidence intervals. A larger performance index va- 
lue implies more accurate bootstrap confidence interval esti- 
mates. 

2. Interval mean index: This index represents the average of
interval lengths (i.e. difference between the lower and up-
per limits) of N bootstrap confidence intervals. Moreover, a 
smaller value of interval mean index implies a more precise 
estimation and improved performance of the bootstrap con- 
fidence interval estimates. The appearance of smaller inter- 
val means is associated with a smaller coverage performance, 
implying a trade-off between precision and accuracy. 

3. Interval standard deviation index: This index represents the
standard deviation of interval lengths of N bootstrap confi- 
dence intervals. A small standard deviation implies a sma- 
ller estimated variation and improved performance of boots- 
trap confidence interval estimates. 

The coverage probability of the confidence interval for a 
parameter is close to a nominal value of 0.95 under normal dis- 
tribution (Kyselý, 2010). For non-normal distribution, the cove- 
rage probability of the confidence interval for a parameter can 
be appreciably below 0.95 (Niwitpong and Kirdwichai, 2008). 
The coverage performance with short average interval length 
in all situations is the evidence for good bootstrap confidence 
intervals (Chu and Ke, 2006; Efron and Tibshirani, 1986). The 
95% confidence interval using classical method of emission 
estimates were calculated for comparison with bootstrap confi- 
dence intervals using the similar procedure. Hereafter, the 95% 
confidence interval is referred as the “classical confidence in- 
terval. Matlab software was used to generate the dataset of emi- 
ssion estimates and construct confidence intervals along with 
the sensitivity analysis.   

4. Result of Sensitivity Analysis

Results of simulation procedure are presented as follows. 
Three performance indices were plotted against various sample 
size n for each non-normal distribution (i.e., Weibull, Gamma 
and Beta) (Figures 2 ~ 4). In those figures, respective abbrevia- 
tions of classical confidence interval, standard bootstrap, per-
centile bootstrap, biased-corrected percentile bootstrap and 

bias-corrected accelerated were represented as Classical, SB, 
PB, BCPB and BCa. The scale difference in vertical axis of 
Figures 2 ~ 4 arises owing to use of different parameter values. 
An increase in sample size n (n = 5, 6, …, 30) gives larger cove- 
rage performance, while both interval mean and standard de-
viation decreases. Thus, improvement of estimation precision 
and accuracy for the four bootstrap confidence intervals and 
the classical confidence interval depends on the increased sam- 
ple size.  

Figure 2a indicates that when the sample size n exceeds 15 
for Weibull(α = 10, β = 25) and 12 for Weibull(α = 25, β = 25), 
the coverage performance is approximately 0.90 or above. 
Figure 3a indicates that when the sample size n exceeds 16 for 
both Gamma(α = 1.0, β = 1.0) and Gamma(α = 2.0, β = 1.0),  
the coverage performance is approximately 0.90 or above. Fi- 
gure 4a indicates that when the sample size n exceeds 8 for 
Beta(α = 0.5, β = 0.5) and 16 for Beta(α = 1.0, β = 0.5), the co- 
verage performance is approximately 0.90 or above. Although 
all four methods display a similar trend in terms of coverage 
performance, the BCa method largely outperforms the SB, PB 
and BCPB methods for all three non-normal (i.e. Weibull, Ga- 
mma and Beta) distributed emission estimates. The small diffe- 
rences in results when comparing these methods are of little 
practical significance in the cases explored here. For non-nor- 
mal cases, the coverage performances of classical confidence 
interval are lower than 95% when the sample size is small.  

The four bootstrap confidence intervals were compared 
using interval mean and interval standard deviation. Figures 2b, 
3b and 4b indicate that all interval means for the four bootstrap 
confidence intervals decrease with sample size n. The differen- 
ces among the average interval lengths of the four bootstrap 
confidence intervals are negligible when sample size n is grea- 
ter than 15. Figures 2c, 3c and 4c indicate that all interval stan- 
dard deviations for the four bootstrap confidence intervals de- 
crease with sample size n. The differences among the interval 
standard deviations of the four bootstrap confidence intervals 
are negligible when the sample size n is greater than 15. For 
non-normal cases, the average interval lengths and interval stan- 
dard deviations of classical confidence interval are higher than 
four bootstrap confidence intervals when the sample size is sm- 
all and are quite similar to bootstrap confidence when sample 
size is greater than 15.  

The bootstrap confidence intervals for the emission estima- 
tes were compared to the results from the classical confidence 
interval and also among themselves. The comparison results 
are summarized as follows. Bootstrap confidence intervals per- 
form better than classical confidence interval for small dataset 
under non-normal situation in terms of interval mean and inter- 
val standard deviation. BCa confidence interval performs better  
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Figure 2. Coverage performance, interval mean and interval standard deviation vs. sample size under Weibull (α = 10, β = 
25) and Weibull (α = 25, β = 25).
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Figure 3. Coverage performance, interval mean and interval standard deviation vs. sample size under Gamma (α, β) = (1.0, 
1.0) and Gamma (α = 2.0, β = 1.0). 
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than the remaining three bootstrap confidence intervals for a 
non-normal dataset in terms of coverage performance. When 
sample size is greater than or equal to 15, the coverage perfor- 
mance of BCa confidence interval is approximately 0.90. There- 
fore, this study recommends BCa confidence interval to quan-
tify the uncertainty of the emission estimates with minimum 
sample size 15. 

5. Case Study of Emission Data from Oil and Natu-
ral Gas Industry 

This case study demonstrated the effectiveness of the pro- 
posed procedure based on emission data taken from the Ameri- 
can Carbon Registry for emission reduction measurement and 
monitoring methodology for conversion of high-bleed pneu-
matic controllers in oil and natural gas systems (American Car- 
bon Registry, 2010). The emission data set contained a total of 
35 measurements from continuous high-bleed pneumatic con-
trollers of two manufacturers (Cemco and Invalco). The results 
of the t-test for independent two samples showed that there is a 
significant difference between the population means of Cemco 
and Invalco controllers (American Carbon Registry, 2010). The 
detailed procedure of data collection is given in the American 
Carbon Registry. Pneumatic controllers powered by the pressu- 
rized natural gas are used to regulate the process variables such 
as pressure, flow rate and liquid level. As part of normal opera- 
tions, pneumatic controllers release the methane emissions to 
the atmosphere from natural gas industry. Pneumatic controllers 
can be designed at both high and low-bleed rate. The conversion 
of high-bleed controller in oil and natural gas industry can re- 

duce these emissions. The replacement of high-bleed with low- 
bleed depends on the baseline monitoring methodology which 
describes the baseline measurement and monitoring procedures. 
The baseline scenario is the continued use of high-bleed pneu- 
matic controllers. Baseline emissions are comprised of the na- 
tural gas vented to the atmosphere from these high-bleed con-
trollers. Uncertainties related to the estimates of methane emi- 
ssion reductions from high-bleed pneumatic controller are to 
be quantified.  

The calculation of the uncertainty of emission rate for ba- 
seline emission can be clearly performed based on statistical 
assumptions. The assumptions are that the error in the emission 
rate is normally distributed and the errors in the parameter esti- 
mates are independent. The classical confidence intervals for 
emission rate were computed based on these above assumptions. 
Alternative calculation method is, non-parametric bootstrap in- 
tervals, were used, when emission data is not normal.  

Table 2 summarizes the high-bleed rates (i.e., emissions 
data) taken from the direct measurement of 35 controllers, whi- 
ch are from two manufactures: Cemco and Invalco. The mean 
bleed rate is 518.94 scfd for Cemco controllers and is 628.86 
scfd for Invalco controllers. The 95% confidence intervals are 
used to quantify the uncertainty of the mean bleed rate of Cemco 
and Invalco controllers. Uncertainty of the mean bleed rate of 
various controllers was quantified by using two samples from 
two oil and natural gas systems. Based on the procedure in Sec- 
tion 3, Steps (iii) ~ (v) were performed without any distribution 
assumption to construct the four bootstrap confidence intervals. 
Tables 3 and 4 summarize the classical confidence interval and 
four bootstrap confidence intervals for the mean of the two emi- 
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Figure 4. Coverage performance, interval mean and interval standard deviation vs. sample size under Beta (α = 0.5, β = 0.5) 
and Beta (α = 1.0, β = 0.5). 
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ssion datasets, respectively. With respect to the interval width, 
the confidence intervals for the mean of emission data from the 
bootstrap methods are shorter than the classical method. The 
four bootstrap intervals provide satisfactory coverage percen- 
tage under three non-normal distributions and BCa interval pro- 
vides slightly higher coverage percentage with smaller interval 
width than other three confidence intervals. Therefore, the un- 
certainty estimate for high-bleed rates from BCa method are uti- 
lized and they are approximately ±64.55 (Cemco) and ±108.64 
(Invalco), respectively.  

Moreover, the probability plots in Figure 5 indicated that 
the emissions data of Cemco manufacturer is not normal (KS = 

Table 2. High-Bleed Pneumatic Controller Emission Data 

Baseline bleed rate, scfd, Manufacturer 

Cemco (n = 18) Invalco (n = 17) 

367 518.1 

432 274.3 

528 655 

732 1052.2 

463.2 597.6 

576 559.2 

696 415.2 

535.2 636 

726.7 744 

851.5 540 

401.3 285 

386 984 

441.9 1034 

355.6 712 

401.3 657 

447 703 

441.9 324 

406.4 

0.237 and p-value < 0.010). Also, the emissions data of Invalco 
manufacturer is normal (KS = 0.138 and p-value > 0.150). Ob- 
viously, according to Tables 3 and 4, when the sample size is 
small, bootstrap confidence intervals are more applicable than 
the classical confidence interval in both circumstances, regard- 
less of the distribution is normal or non-normal.  

6. Conclusions

In general, the classical method is used to construct the 
confidence interval for quantifying the uncertainty of GHG 
emission estimates when sample size is sufficiently large or the 
distribution is normal. However, using the classical method to 
construct confidence interval for quantifying the uncertainty of 
GHG emission estimates may lead to a significant bias when 
the sample size is small or the distribution is non-normal. In pra- 
ctice, obtaining a large emission dataset is difficult and fitted a 
distribution to emission data of small sample size may not be 
accurate. Therefore, this study quantifies the uncertainty of emi- 
ssion estimates for non-normal distributions (namely, Weibull, 
Gamma and Beta) using non-parametric bootstrap method. Sen- 
sitivity analysis with various combinations of sample size and 
parameter values was performed to examine the behavior of 
four bootstrap confidence intervals (i.e. SB, PB, BCPB and BCa) 
and also the classical confidence interval. Three performance 
indices were utilized to examine the accuracy and precision of 
the uncertainty for various interval estimations. Simulation re- 
sults indicated that the sample size significantly impacts the per- 
formance of the confidence intervals for non-normal distribu-
tions. A large sample size always increases the coverage perfor- 
mance, reduces the interval mean, and decreases the interval 
standard deviation of the bootstrap confidence intervals. Com- 
pared with the classical confidence interval, bootstrap confi-
dence intervals have smaller interval mean and smaller interval 
standard deviation for small sample size (n < 30) under non- 
normal distributions. Although all four bootstrap confidence 
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Figure 5. Probability plots for baseline bleed rate of emission Data from Oil and Natural Gas Systems for Cemco and In-
valco. 
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intervals display a similar trend in terms of coverage perfor-
mance, the BCa confidence interval performs better than the 
remaining three bootstrap confidence intervals for non-normal 
distributions, especially when the sample size is 15 or more. 
When the sample size exceeds 30, either the classical confi-
dence interval or bootstrap confidence intervals may be used 
regardless of whether the distribution is normal or non-normal. 
A case study with small sample size also showed that BCa con- 
fidence interval performs better than other intervals with shor- 
ter interval length. The non-parametric bootstrap confidence 
intervals for quantifying the uncertainty of the emission estima- 
tes can be obtained quickly by using computer software packa- 
ges. 
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