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ABSTRACT. A new autoregressive-type, updating fuzzy linear regression method is proposed to predict daily dissolved oxygen (DO) 
concentration in a highly urbanized riverine environment. Results of this model are compared to results from an updating Bayesian regre- 
ssion model. Both methods use lagged daily DO (at four different lags) as the independent variable. Uncertainty in the models is represen- 
ted by a fuzzy number based approach in the first case, and by a Bayesian framework in the second. Real-time data from the Bow River 
in Calgary, Canada is used to calibrate the models sequentially to mimic a real-time updating model. Four different performance metrics 
were used to measure the performance of each model. Lastly, the input data resolution is reduced to measure the impact on model perfor- 
mance. Results show that the physical system can be adequately characterized using only one year of data. Both approaches can capture 
the general trend of daily DO, but the fuzzy number based method can better capture the changes in observed variability. The metrics for 
both models are comparable, with the one-day lag case categorized as “very good”; however, the performance reduces at higher lags. 
The fuzzy number method captures more low DO events than the Bayesian approach, with a much lower mean squared error. A possibility 
to probability transformation is used to highlight the risk of low DO days for the fuzzy case. Lastly, reducing the input data resolution 
from 96 to 6 points per day has a minimal impact on model performance, suggesting the limited efficacy or utility in increasing sampling 
rates.  
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1. Introduction 

The dissolved oxygen (DO) concentration of a water body 
is a key indicator of overall aquatic ecosystem health (Dorfman 
and Jacoby, 1972; Hall, 1984). Low DO concentration, and the 
daily variability in DO, can increase the risk of adverse effects 
to the aquatic environment. While the impact of long term effe- 
cts are largely unknown, low oxygen events can have devasta- 
ting effects on biological communities (Adams et al., 2013). For 
this reason, it is widely measured and modelled in various juris- 
dictions as part of broader water quality assessment programs. 
A number of different biotic and abiotic factors are known to 
govern and impact the magnitude and diurnal fluctuation of DO 
concentrations in riverine environments (He et al., 2011). This 
includes the amount of aquatic organisms such as macrophyte 
and algae, the concentration of nutrients in the water column, 
the oxygen demand exerted by sediment in the riverbed, or the 
temperature of the water (Pogue and Anderson, 1995; Hauer 
and Hill, 2007). However, understanding DO variability in large 
urban environments is considerably more challenging. The added  
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complexity resulting from the interactions of numerous factors, 
over a relatively small area and across different temporal scales 
means that DO trends in urban areas are more difficult to predict 
(Hall, 1984; Niemczynowicz, 1999). Secondly, rapid changes 
in the urban environment means that the factors and regimes 
influencing water quality and DO in the riverine environment 
might also change rapidly. 

2. An Overview of Modelling DO Using Data-Driven 
Approaches 

The issues mentioned in the previous section highlight the 
limitations of physically-based models, which are typically 
used to model DO, and indicate that these types of models may 
be unsuitable in urban watersheds (He et al., 2011; Khan et al., 
2013; Khan and Valeo, 2014a). This is because these models can- 
not capture the added complexity of the urban aquatic ecosys- 
tem; are typically calibrated at a scale (spatial and temporal) that 
is not representative of the entire system; cannot accommodate 
the interactions between various system parameters; require a 
complete, or near-complete understanding of all the factors affe- 
ctting DO; or that the underlying processes governing DO are 
unknown (Cox, 2003; Xu et al., 2012; Khan and Valeo, 2014a). 
Secondly, given the rapid changes in urban areas, any long-term 
inferences made using static (i.e. non-updating) physically-based 
or conceptual models, do not capture the impacts of these short-
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term changes (Radwan et al., 2009). Uncertainty in measured 
data and temporal and spatial variability compound these pro- 
blems (Robinson et al., 2009; Khan and Valeo, 2014a) and high- 
light the need for a modelling approach that is: sensitive to the 
short-term changes in the urban environment; not limited to 
calibration at specific locations; and can capture the observed 
uncertainty within the model. In this research, we propose that 
a data-driven approach to predict DO concentration in an urban 
riverine environment is an attractive alternative to existing me- 
thods. 

Data-driven models are a class of numerical models that 
create generalized links between input and output datasets (So- 
lomatine and Ostfeld, 2008). Examples of data-driven models in- 
clude linear regression, autoregressive models, neural networks, 
fuzzy regression and fuzzy rule-based systems, model trees, and 
genetic programming (Shrestha and Solomatine, 2008; Solo- 
matine et al., 2008b; Elshorbagy et al., 2010). These methods 
have been widely used in environmental and hydro-informatics, 
because they provide good agreement between observed and  
modelled data, are generally easier to calibrate, are based on 
objective information and require limited assumptions about 
the physical process being modelled (Solomatine et al., 2008a; 
Solomatine et al., 2008b; Elshorbagy et al., 2010). In addition 
to this, data-driven models are useful in solving practical pro- 
blems, especially when knowledge driven simulation models 
cannot be constructed due to lack of understanding of the pro- 
cesses or when existing models are inadequate (Solomatine et 
al., 2008b). Often it is assumed that data-driven models have 
higher data requirements to calibrate and validate the model, 
however, physically-based models also require extremely speci- 
fic data to calibrate conceptual models, which are often very 
difficult to measure (Solomatine et al., 2008a; Antanasijević et 
al., 2014). Some have argued that the data requirements for data-
driven models are in fact lower than deterministic models (An- 
tanasijević et al., 2014). In addition to this, with increased use 
of real-time water quality monitoring stations, there exists a 
great opportunity to utilize high resolution data that is conti- 
nuously being collected at numerous locations in many jurisdi- 
ctions. Thus, the availability of data – which is often cited as a 
limiting factor in the success of data-driven models (e.g. Solo- 
matine et al., 2008b) – is no longer a major issue, particularly 
for major urban areas, where high resolution datasets are rea- 
dily available.  

Data-driven models have been used in a large number of 
studies to predict water quality parameters, including DO in 
many rivers across the world. A recent example of using these 
types of models to predict DO concentration in riverine envi- 
ronments include Wen et al. (2013) who used artificial neural 
networks (ANN) to predict DO in a river in China using ion 
concentration as the predictors. Similarly, Antanasijević et al., 
(2014) used ANNs to predict DO in a river in Serbia using a 
Monte Carlo approach to quantify the uncertainty in model pre- 
dictions and temperature as a predictor. Chang et al. (2015) also 
used ANNs coupled with hydrological factors (such as precipi- 
tation and discharge) to predict DO in a river in Taiwan. Singh 
et al. (2009) used water quality parameters to predict DO and 
BOD in a river in India. Other studies have used multiple linear 

regression to predict DO in rivers using factors such water tem- 
perature, or electrical conductivity, amongst others: e.g. Hedd am 
(2014) for a river in Oregon, USA, Ay and Kisi (2011) for a river 
in Colorado, USA and He et al. (2011) for a river in Calgary, 
Canada. These studies have found that data-driven model per- 
formance for DO prediction is suitable, and model performance 
statistics have been high. This shows that modelling DO using 
data-driven techniques is growing in popularity, likely owing 
to the difficulty in fully defining and understating the physical 
mechanisms that govern DO. 

 

2.1. Modelling DO in the Bow River in Calgary, Canada 

Recent research on improving DO prediction in the Bow 
River in Calgary, Canada (the study site for the present research) 
has focused on including uncertainty in the data-driven models 
(He et al., 2011; Khan et al., 2013; Khan and Valeo, 2014a; Khan 
and Valeo, 2014b). In Calgary, rapid population growth and ex- 
pansion has led to increased urbanisation, resulting in detriment- 
tally low DO events in the Bow River. The river is of extreme 
importance for the City, given that it provides more than 60% 
of the population with potable drinking water, and is also used 
for irrigation, industrial and recreational activities (Robinson et 
al., 2009; BRBC, 2010). The river has an average annual disch- 
arge of 90 m3/s, an average width and depth of 100 m and 1.5 m, 
respectively (Khan and Valeo, 2014a). Given its size, and the rate 
of development in the watershed – the river is one of the most 
regulated rivers in Alberta (BRBC, 2010) – the Bow River is 
approaching its assimilative capacity. The City of Calgary is 
mandated to control the total loading of sediment and nutrients 
in the river to prevent detrimental impacts on the water body. 
The City has implemented numerous strategies to limit load- 
ings into the river, and use numerical modelling as part of its 
strategy to predict not only the impacts of strategies on water 
quality, but also to forecast the future state of the river under 
different scenarios. Currently, the Bow River Water Quality 
Model (see Tetra Tech, 2013 and Golder, 2004 for details) a 
physically-based conceptual model is used to predict DO and 
other water quality parameters. However, research by He et al., 
(2009), Khan et al. (2013) and Khan and Valeo (2014a) has sho- 
wn that data-driven models, particularly those that use abiotic 
factors (such as river discharge, or water temperature) as inputs, 
and regression models, have promising results to predict DO 
concentration in the Bow River. The advantage of using readily 
available data in these studies was that if a suitable relationship 
between these factors and DO could be found, changing the 
factors (e.g. increasing the discharge rate downstream of a trea- 
tment plant) could improve DO at times when the risk of low 
DO was high.  

 

2.2. Uncertainty Analysis Using Bayesian and Fuzzy Num- 
ber Frameworks 

However, a general drawback of numerical representation 
of physical systems is uncertainty the in its various forms, such 
as in the input and output data, in the model structure, and in 
the parameters. While in physically-based models, the structure 
of the model is assumed to be true (e.g. the empirical or theore- 
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tical relationship), uncertainty is typically only thought to be 
present in the model parameters. However, this does not take 
into account that these process models may be incomplete, e.g. 
a certain process is missing. In contrast to this, there might exist 
structural uncertainty in data-driven models, i.e. whether or not 
the best model structure has been selected. In both cases, this 
type of uncertainty is due to imperfect model structure (Shre- 
stha and Solomatine, 2008). Scarcity in data and measurement 
errors can contribute to uncertainty in modelling projections 
(Zhang et al., 2009; El-Baroudy and Simonovic 2006). Addition- 
ally, uncertainty may be increased when data from multiple 
sources are used, integrated and propagated (Porter et al., 2000; 
Shrestha and Nestmann 2009; Shrestha and Simonovic 2010; 
Suo et al., 2013). The proper identification and propagation of 
this uncertainty is critical for understanding and evaluating mo- 
del prediction (Shrestha and Nestmann, 2009; Li et al., 2009). 

Typically, to address uncertainty, probability based meth- 
ods, such as Bayesian inference have been used to describe the 
uncertainty in models (Vrugt et al., 2009; Freni and Mannina et 
al., 2010; Tyralis and Koutsoyiannis, 2014; Gelman et al., 2014). 
The use of Bayesian based methods has increased in recent years, 
due to the fact that computing speed has increased significantly 
(Koop, 2003). Thus, numerical solutions (such as Monte Carlo 
simulations, which are almost always required) for Bayesian 
problems can now easily and quickly be found for cases where 
no analytical solutions exist (Greenberg, 2008). The basic prin- 
ciple of Bayesian applications in uncertainty analysis in nume- 
rical models is that any prior information (i.e. information glea- 
ned from previous research or experience) can be included into 
the current analysis to estimate or update current parameters 
(Birkes and Dodge, 1993; Shrestha and Solomatine, 2009; 
Gelman et al., 2014). This essentially weighs the results from 
current data (referred to as the likelihood in Bayesian termi- 
nology) against prior data. The posterior then, according to 
Bayes rule, is proportional to the product of the likelihood and 
prior. This implies, for example, that any calculated model 
parameters are a function of the likelihood function (calculated 
from the current data) and the prior (from any previous data). 
The advantages of using a prior and Bayesian analysis in general, 
is that it prevents model “over-learning”. More generally, Baye- 
sian analysis provides a statistical or probabilistic representa- 
tion of a system rather than the typical deterministic representa- 
tion, thus, providing confidence in predictions (Thiemann et al., 
2001; Kingston et al., 2005). This means that the uncertainty in 
a model is represented by including probability distributions of 
various parameters in a model. It also allows the inclusion of 
subjective or expert opinion (through the prior). In contrast to 
this, non-Bayesian techniques only provide deterministic results, 
typically the mean value rather than the entire probability distri- 
bution.  

Since Bayesian inference of model parameters is a proba- 
bilistic technique, it requires strong assumptions regarding the 
probability distribution functions for parameters, which may 
not always be suitable. Assuming or substituting an approxi- 
mate distribution in place of the true or exact distribution might 
lead to large errors (He and Valeo, 2009). In addition to this, there 
is an on-going debate on the sensitivity of Bayesian analyses on 

the selection of a suitable prior: in many cases a subjective prior 
may give vastly different results than an objective prior (Ordaz 
et al., 1994; Freni and Mannina, 2010). In general, in many cases 
where uncertainty in model parameters is important, a Bayesian 
analysis is preferred over a simple deterministic analysis (Vicens 
et al., 1975). It should be noted, however, that uncertainty in data-
driven modelling techniques is not purely random or probabili- 
stic in nature (Dubois and Prade, 1997; Ozbek and Pinder, 2006), 
as is implied by adopting a Bayesian framework. An alternative 
to the probability based representation of uncertainty is through 
the use of fuzzy set theory, particularly in relation to possibility 
theory and fuzzy numbers.  

A fuzzy number is a specific type of quantity that expre- 
sses uncertain or imprecise quantities, measurements or obser- 
vations (Khan and Valeo, 2014a; Huang, et al., 2010; Tan et al., 
2015). They are more suitable when data is missing, incomplete, 
combined from multiple sites, to represent uncertainty that is 
not purely random in nature, or when not enough information 
is available to develop a probability distribution function (Bár- 
dossy et al., 1990; Guyonnet et al., 2003; Zhang and Achari, 
2010; Huang et al., 2010; Xu et al., 2014). A fuzzy number is a 
convex and normal fuzzy set (Zadeh, 1965). A fuzzy number A, 
with elements [a1, a2, …, an] is defined by its membership 
function, μ, which assigns a membership level for each element 
of A. For a fuzzy number, μ is bounded in the interval [0 1]. A 
linear (or triangular shaped) membership function is typically 
used to define fuzzy numbers. This type of function is selected 
due to its simplicity: given that a fuzzy number must, by 
definition, be convex and normal, a minimum of three elements 
are needed to define a fuzzy number (two elements at μ = 0 and 
one element at μ = 1), resulting in a triangular shaped function. 
Following this, in probability-possibility frameworks, a train- 
gular membership function corresponds to a uniform probabi- 
lity distribution – the least specific distribution since any value 
is equally probable and hence, represents the most uncertainty 
(Dubois et al., 2004; Dubois and Prade, 2015). However, these 
types of functions are not be the most suitable for environmen- 
tal data (Khan et al., 2013, Khan and Valeo, 2014a). The consis- 
tency principle (Zadeh, 1978; Dubois et al., 1993) links possi- 
bility and probability, implying that something has to be possi- 
ble before it is probable. A number of methods have been created 
that utilize this principle to convert observed data into fuzzy 
numbers. A summary of these methods is available in Oussalah 
(2000).  

As in the Bayesian inference case, fuzzy numbers can in- 
corporate expert opinion, and also provide more meaningful in- 
formation than traditional, non-fuzzy (referred to as “crisp”) nu- 
mbers (Khan et al., 2013; Khan and Valeo, 2014a). Since fuzzy 
numbers are based on possibility theory, it means that some of 
the strict assumptions in many probability models (e.g. the Nor- 
mality assumption for linear regression) can be relaxed when 
dealing with fuzzy numbers, making it useful for environmen- 
tal systems (Peters, 1994; Kim et al., 1996; Kahraman et al., 
2006). The nature of fuzzy numbers lends itself well to risk ana- 
lyses, since the risk of a fuzzy number to cross a given thre- 
shold (e.g. water quality guidelines) and can be directly inferr- 
ed from the fuzzy number. Fuzzy numbers have been widely 



U. T. Khan and C. Valeo / Journal of Environmental Informatics 30(1) 1-16 (2017) 

4 
 
 

used in countless environmental and hydrological applications 
for uncertainty analysis (e.g. Li et al., 2013; Hu et al., 2014; Xu 
et al., 2014; Tan et al., 2015). The literature demonstrates the 
utility and advantage of using fuzzy numbers and a summary 
of some of these applications can be found in Khan and Valeo 
(2014a).  

 

2.3. Objectives 

The above review shows that there is considerable oppor- 
tunity to use both Bayesian and fuzzy number based methods, 
along with data-driven models (particularly regression based 
methods) to improve the prediction of environmental parame- 
ters such as DO. In this research, we formulate a Bayesian linear 
regression and a fuzzy linear regression approach to predict DO 
in the Bow River in Calgary. To do this, we rely on real-time 
DO data that is already being collected (in this case by the City 
of Calgary, as part of its on-going long term water quality 
assessment program), and we eliminate the need for other data 
(hence reducing uncertainty) by using an autoregressive approa- 
ch. Finally, we propose a recursive algorithm that is updated as 
more data is added into the modelling system. The advantage 
of this approach would be to capture the rapid changes in the 
urban environment reflected in the new data. This is contrast to 
typical modelling structures where part of the data is allocated 
for calibration, and the remainder for validation. The use of 
Bayesian and fuzzy methods ensures that the uncertainty is cap- 
tured in the respective models. A compa- rison between the two 
methods will be conducted to determine the efficacy of each, 
and the conditions when one method outperforms the other. 

3. Methods 

3.1. Data Collection and Site Description 

The Bow River basin, located in southern Alberta, Canada, 
is approximately 25,123 km2 in size and the river is 645 km 
long (BRBC, 2010). The headwaters are located at Bow Lake, 
in the Rocky Mountains, from where it flows south-easterly to 
Calgary, before meeting the Oldman River south-east of the 
City, and eventually draining into Hudson Bay (Robinson et al., 
2009; Environment Canada, 2014). The Bow River is supplied 
by precipitation accumulated in the snowpack in the Rocky 
Mountains, rainfall and discharge from shallow groundwater.  

The City of Calgary routinely samples a variety of water 
quality parameters along the Bow River within the City limits, 
primarily to measure the effect of urbanization, including the 
impacts of wastewater treatment plant effluent and stormwater 
runoff on the Bow River. Real-time water quality monitoring 
systems are stationed at the upstream (at the Bearspaw reser- 
voir) and downstream (currently at Highwood, see Figure 1) 
ends of the City. Comparing water quality results from these 
two stations shows the direct impact of the City on the water 
quality, and thus the health of the Bow River (Khan and Valeo, 
2014b). DO concentration measured at the upstream site is 
generally high throughout the year, with little diurnal variation 
(He et al., 2011; Khan et al., 2013; Khan and Valeo, 2014a). 
However, DO concentration downstream of the City limits is 

typically lower, and experiences much higher diurnal fluctua- 
tions. The three wastewater treatment plants (Bonnybrook, Fish 
Creek and Pine Creek, see Figure 1) located upstream of this 
monitoring site, and other impacts of urbanization are thought 
to be responsible for the degradation of water quality at the Hi- 
ghwood monitoring station.  

 

 
Figure 1. Aerial image of the City of Calgary showing the loca- 
tions of the water and wastewater treatment plants, and moni- 
toring locations. 

For this research, real-time DO concentration data was 
collected for this downstream station for the period of 2004 to 
2013. Between 2004 and 2007 the monitoring station was loca- 
ted at Pine Creek and sampled DO (along with a suite of other 
standard water quality parameters) every 30 minutes (for 2004 
and 2005), and every 15 minutes (for 2006 and 2007). In 2008 
the station was moved to Stier's Ranch, where it remained until 
2011, and sampled data every hour (in 2008) and every 15 min- 
utes from there on. The site was moved further downstream to 
its current location (at Highwood) in 2012 where it sampled 
every 15 minutes until 2013.  

A YSI sonde is used to monitor DO (along with the other 
water quality parameters. The accuracy of DO concentration 
measurement using this sonde is listed by the manufacturer as 
±2% or ±2 mg/L, whichever is greater (YSI Inc., 2013). The 
sonde is not accurate in freezing water, thus only data from the 
ice free period was considered, which is approximately from 
April to October for most years. Since low DO usually occurs 
in the summer (corresponding to high water temperature and 
lower discharge), the ice-free period dataset still contains the 
dates that are of interest for low DO modelling.  

 
3.2. Model Implementation 

A preliminary analysis of the DO concentration (Khan and 
Valeo, 2014b) shows that the daily mean DO concentration is 

2
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highly serially correlated with lagged daily mean DO concen- 
tration (the correlation was high for 1, 2 and 3 day lags). This 
correlation was stronger than any other relationship explored 
(with other water quality parameters such as water temperature, 
or other environmental parameters such as river discharge, or 
climatic data such as solar radiation). Thus, for this research, a 
model was sought in the following form: 

 

( )  ( ( - ))DO t f DO t d              (1) 

 
where DO(t) is the mean daily DO for day t, and DO(t - d) is 
the mean daily DO for day (t-d), and d is in units of days. Values 
of d were selected as 1, 2, 3, and 7 days – this was to see the 
applicability of data-driven models for short-term model predi- 
ctions. As mentioned above, two regression techniques were 
explored for this research: a Bayesian and a fuzzy linear regres- 
sion approach. For both cases, the form of the model was: 

 

0 1  LDO DO              (2) 

 

where DO is the observed mean daily DO concentration, DOL 
is the lagged mean DO concentration, and β0 and β1 are the 
regression coefficients. Typically, in a numerical modelling set- 
up, a portion of available data is used for model calibration, and 
the remainder is used for model validation. For this research, a 
different algorithm to calibrate and validate the model was im- 
plemented, a quasi-real-time, model updating system was used. 
This means, initially, one year’s worth of data (2004) was used 
to calibrate the regression model (either Bayesian or fuzzy), 
while data from the following year (2005) was use to validate 
the model. Then, two years of data were used to calibrate the 
model (2004 and 2005) and the next year (2006) for validation, 
and so on. This structure is used to simulate a real-time recur- 
sive algorithm, where when more data is available, the model 
updates its parameters (n.b. a similar approach for hydrologic 
parameter estimation was adopted by Thiemann et al., 2001). 
By doing so, any changes in the system are implicitly captured 
by the data-driven model as each subsequent year is added to 
the dataset. The table below lists the nine models that were 
created using this approach and the associated datasets. These 
models were created for four different cases (lags of 1, 2, 3 and 
7 days) for both the Bayesian and fuzzy regression cases. 

Table 1. Details of Data Used to Calibrate and Validate each 
Model in the Recursive Modelling Scheme 
Model no. Calibration data Validation data 

M01 2004 2005 

M02 2004–05 2006 

M03 2004–06 2007 

M04 2004–07 2008 

M05 2004–08 2009 

M06 2004–09 2010 

M07 2004–10 2011 

M08 2004–11 2012 

M09 2004–12 2013 

An added utility of this method is that in Bayesian modelling 
techniques, a prior value is often needed to calibrate the model. 
Thus, with this approach, the model parameters obtained from 
M01 were used as priors for calibrating M02, and then these 
updated parameters used as priors for M03, and so on. For the 
first case (i.e. M01), a type of prior known as a non-informative 
prior was used. This prior assumes complete ignorance of prior 
values of the parameters, essentially a uniform distribution with 
an extremely large variance. Details of the informative and 
non-informative priors are described in detail in the proceeding 
section.  

As mentioned earlier, the efficacy of data-driven modelling 
may be dependent on the amount and quality of data available. 
The available dataset has a resolution of 96 samples per day 
(corresponding to sampling every 15 minutes) for most years. 
As an additional test to compare the two data-driven models, 
the resolution of the input dataset was reduced from 96 samples, 
first to 24 samples per day (sampling every hour), and then to 
6 samples per day (sampling every 4 hours). Then, the entire 
analysis (i.e. calibrating and validating the nine recursive 
models, M01-M09) was repeated using the lower resolution 
datasets, at each of the four lags. In other words, for the initial 
case, mean daily DO was calculated using 96 samples for each 
day, which reduced to using 24 samples for the second case, 
and only 6 samples in the last case. This was done to compare 
the change in performance of both methods as the available 
data was reduced. Results from this component of the research 
can assist in determining an optimal data sampling scheme.  

 

3.3. Bayesian Linear Regression 

Bayesian linear regression (BLR) is an approach to ordinary 
linear regression (OLR; one of the most widely used data-driven 
models in environmental informatics) within a Bayesian frame- 
work. There are several advantages of using Bayesian regression 
over the ordinary case including: the use of prior information, 
the ability to update on existing evidence, improved performan- 
ce for small samples, the ability to use data from different sources 
(through a strong prior), easier formulation in complex models, 
higher flexibility and greater stability, lower influence of out- 
liers, and directly estimating uncertainty in the parameters and 
predicted values (Chen and Martin, 2009; Wakefield, 2013).  

In this research, two Bayesian frameworks are adopted to 
predict DO concentration: one uses an objective (or non-infor- 
mative) prior and the other uses independent and informative 
priors. Details of the mathematical development of both these 
methods (stemming from the Normal regression model) are 
included in the Supplementary Material. The first case is used 
when prior information may not be available, making it diffi- 
cult to describe the prior. Using a non-objective prior, the Baye- 
sian regression development of the predictive distribution (y*) 
can be found analytically and is multivariate t: 

 

 * * 2 * *| ~ ( , [ ], )Ty y t X s I X VX     (3) 

 
where X* are new observations used for prediction, y* are the 
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predicted values, ࢼഥ  are the posterior estimate of regression 
coefficients with posterior variance ࢂഥ ത૛࢙ ,  are the posterior 
estimates of the standard error, ࡵ is the identity matrix, and തૅ 
are the posterior degrees of freedom.This formulation was used 
to model daily mean DO (i.e. y*) using DOL (i.e. X) as the 
regressor for the case where the first year of available data (2004) 
was used to calibrate the model and data from 2005 was used 
to validate the model (labelled as M01 in Table 1). This is be- 
cause for this case, in 2004, there is no information available to 
choose a so-called informative, natural conjugate prior.  

The second case (independent and informative priors) is 
used when sufficient information is available to define the prior. 
Thus, for subsequent models (i.e. M02 onwards), independent 
and informative priors were used. For example, in M02, two 
years of data are used to calibrated the Bayesian regression 
model (2004 and 2005) while data from 2006 is used to validate 
the model. For the calibration procedure, the posterior estima- 
tes the model coefficients from M01 are used as the priors for 
the coefficient estimates for the M02 model. However, using 
these priors an analytical solution for the posterior is not possi- 
ble, so a numerical solution using a Gibb’s sampling algorithm 
was used (details of this algorithm are provided in the Suppleme- 
ntary Material). The predictive distribution of y can be estimated 
numerically: for each pair of β and τ (from the Gibb’s sampler), 
a sample for y* can be drawn from the predictive distribution:  

 

 * * 1~ ( , )y N X     (4) 

 

where X* (DOL) are new observations used for prediction and 
y* (DO) are the predicted values, and ࣎ is the inverse of the 
variance. The posterior conditional distributions from the Gi- 
bb’s sampling routine are then used as the priors for the M03 
model, and so on. Thus, in this way data from each quasi-real-
time model is used to add information into subsequent forms of 
the model.  

 

3.4. Fuzzy Linear Regression 

Fuzzy linear regression (FLR) is a method used to extend 
simple linear regression for applications involving fuzzy num- 
bers, i.e. for uncertain or imprecise systems (Khan and Valeo, 20 
14a). This property makes them ideally suited for data-driven 
techniques that model environmental systems. It provides an 
alternative method when simple linear regression may not be 
possible, e.g. when assumptions of simple linear regression are 
not met, or if there is obvious fuzziness or uncertainty in the 
underlying data or process. FLR tries to capture the vagueness, 
and the non-random or fuzzy error in the model structure: it is 
assumed that deviations are due to system fuzziness, i.e. the 
fuzziness of the regression coefficients (Chang and Ayyub, 2001). 
In simple linear regression models, the independent variable x 
predicts dependent variable y and it is assumed that x are 
observed without error (i.e. they are fixed). This assumption is 
typically only true when the independent variables are controll- 
ed and the effect on the dependent variable is measured. Often 
in environmental informatics applications, the dependent data 

are observed with an error, or bias, or are random rather than 
fixed (Maddala, 1988). This introduces a bias in the estimation 
of the model coefficients making an ordinary least square 
estimate of regression coefficients to be underestimated even 
for very large samples (Fuller, 1987; Maddala, 1988). Unlike a 
traditional simple linear regression model, FLR allows uncer- 
tainty in the input parameters to be included in the analysis. 

The FLR used for this research was developed by Khan and 
Valeo (2014a) and is unique in that it uses fuzzy inputs, outputs 
and fuzzy coefficients to parameterize the regression. By doing 
so, the uncertainty in the data and in the structure of the model 
are all represented. In addition to this, the proposed method uses 
non-linear membership functions to define fuzzy numbers rather 
than the typical linear (or triangular) representation. This is more 
suitable in environmental applications, such as predicting water 
quality parameters (Khan et al., 2013; Khan and Valeo, 2014a).  

Instead of minimizing the residual between an observed 
and regressed value, the distance between two fuzzy numbers 
is minimized instead. Given a set of fuzzy observations ࢞෥ and 
 and (෥࢞)෥, and their corresponding membership functions, µ࢟
µ(࢟෥), for (i = 1, 2, ..., n) a regression model is defined as: 

 

    
0 1y x       (5) 

 

where the coefficients 
0 and 1 are fuzzy numbers. The 

objective is to solve the following least-squares optimization 
problem: 

 

    2
0 1 0 1

1

min ( , ) ( , )
N

i i
i

r d y x   


     (6) 

 

where       22
0 1 0 1( , ) [ ]i i i i ud y x y x        for i = 1, 2, ..., n and µ 

= 0 to 1. The metric d measures the sum of the squared-
deviations of the observed ( iy ) and predicted (  

0 1 ix  ) in- 
tervals […]µ, for all -cuts between µ = 0 and µ = 1. Using 
fuzzy arithmetic ensures that the coefficients  0 and 1 are 
normal and convex, a requirement of fuzzy numbers. Using this 
FLR method means that the output of the method is also a fuzzy 
number, in this case a set of values corresponding to the upper 
and lower limits of -cuts at 0, 0.25, 0.5 0.75 and 1. These five 
levels were selected to give a full spectrum of possible values 
of the fuzzy number. 
 

3.4.1 Creating Fuzzy Numbers  

A number of different methods exist to create fuzzy numb- 
ers from observed data; these methods are known as probability- 
to-possibility transformations. A recent summary of different 
conceptual approaches to these transformations is provided in 
Mauris (2013). For this research, a method by Dubois et al. 
(2004) is adapted and implemented to convert the sub-daily DO 
concentration to daily DO fuzzy numbers. This method was de- 
signed to convert a uni-modal discrete probability distribution to 
a triangular fuzzy set. It was adapted by Khan and Valeo (2014 
a) to create non-linear discrete fuzzy numbers. There is consi- 
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derable literature on how to construct fuzzy numbers from ob- 
served data (e.g. Mauris, 2013), and the transformation used in 
this research is as follows: 

For a discrete system, this can be represented as: 

 

if p(x1) > p(x2) > …. > p(xn) 

 

Then the possibility distribution of x (π(x)), follows the 
same order, that is: 

 

π(x1) > π(x2) >…. > π(xn) 
 

The transformation is then given by: 

 

For p(x1) > p(x2) >….> p(xn): 

π(x1) = 1 

1

1 1

, :
( )

( ),:

n
j i i

j i

p if p p
f x

x else


 


          (7) 

 

where the xi are elements of a fuzzy number A, π(xi) is the possi- 
bility of element xi, and p(xi) is the probability of element xi. 

The basic premise of this transformation is to convert a 
non-specific probability distribution (based on the observations) 
to a membership function where the modal value has a μ = 1, 
and the support (the limits of the α-cut interval) is calculated 
using an uncertainty value e. The value of e for the present 
research was selected as 10% representing a cumulative uncer- 
tainty of the measurement and scale effects (Struve and Zhou, 
2010). The values of the fuzzy number at other membership le- 
vels are calculated using a relationship between the probability 
and possibility that matches the area under the pdf to the high- 
est membership level. This transformation follows the the con- 
sistency principle, i.e., an event must be possible before it is 
probable, and order preservation, i.e., if the possibility of xi is 
greater than the possibility of xj then the probability of xi must 
be greater than the probability of xj. 
 

3.4.2 Risk Analysis  

The inverse of a probability-possibility transformation 
(sometimes referred to as “defuzzification” can be used to create 
the probabilistic versions of fuzzy numbers. This is useful when 
model outputs (which are fuzzy numbers) need to be converted 
back to probability based data – typically for communicating 
fuzzy results to water resource managers. For example, a fuzzy 
model output might state that the future value of DO will likely 
be within the interval [4.5 10]μ=0. A decision maker however, 
would like to know the probability P(X < 5 mg/L), i.e. the pro- 
bability that the predicted DO will be below some limit (5 mg/L 
in this case). Inverse transformations have been proposed by 
Oussalah (2000) and Dubois et al. (2004), but produce a point 
estimate of probability for any given value. However, in most 

environmental informatics applications, we are interested in the 
cumulative probability rather than probability of a single disc- 
rete event. Thus, an inverse transformation to calculate the cu- 
mulative probability was developed specifically for non-sym- 
metric fuzzy numbers for discrete systems.  

For any x in X in the support of a fuzzy number [a, b], we 
have the corresponding membership level μ(x) and the paired 
values x' which also shares the membership level. The value 
μ(x) is the sum of the cumulative probability distribution 
between [a, x] and [x', b], labelled AL and AR, respectively: 

 

( ) L Rx A A                (8) 

 

where AL represents the cumulative probability between a 
and x which is equal to the probability P(x < X). Given the fact 
that the fuzzy number is not symmetrical, we use the lengths of 
the two intervals [a, x] and [x', b] to establish a relationship 
between AL and AR. We can then estimate AL as: 

 

( )
( )

'
1

L

x
A P x X

b x

x a


  






           (9) 

 

Thus, this predicted value P(x < X) can be used by water 
resource managers to determine if there is a sufficient risk of 
low DO concentration and can take necessary steps to prevent 
it, if possible. For this research, a low DO “warning level” was 
established as 6.5 mg/L, which represents the lowest acceptable 
DO concentrations for the protection of aquatic life (for non-
early life stages) in cold water ecosystems (CCME, 1999). In 
this research, this inverse transformation was used to calculate 
the risk of low DO (below the warning level) if there was a 
possibility (i.e. when the fuzzy prediction was below the warn-
ing level, at any μ) of low DO.  

 

3.5. Quantifying Model Performance 

Three common model evaluation metrics were used to 
analyse and compare the two regression techniques. The first is 
the Nash-Sutcliffe efficiency (NSE), arguably the most widely 
used performance metric in hydrology and environmental inf- 
ormatics; secondly the RSR (defined by Moriasi et al., 2007); 
and the percentage bias, (PBIAS). These metrics were calcu- 
lated, respectively, as follows: 

 


1

1

1

n

i ii
n

ii

y y
NSE

y y





 





  (10) 

 

 2

1

2

1

)(

( )

n

i ii

n

ii

y y
RSR

y y













  (11) 
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
1

1

100%

n

i ii
n

ii

y y
PBIAS

y





 


 (12) 

 
where yi are the observed values and y

i
are the predicted 

values. Each metric was calculated at each membership level 
for the FLR results, but only calculated for the mean values of 
the sampled Bayesian results. This means that the calculated 
metrics for the Bayesian results will have the best values com- 
pared to values calculated using the minima or maxima sam- 
pled values. It should be noted that these metrics are only a rou- 
gh estimate for the fuzzy numbers. The fuzzy numbers require 
a fuzzy based performance metric to evaluate the actual effica- 
cy of the model – but this is beyond the scope of the current 
research. These three metrics were calculated in part to use a 
model rating system proposed by Moriasi et al. (2007) to facili- 
tate direct comparison with existing models.  

In addition to the aforementioned metrics, another metric, 
the mean squared error (MSE), was calculated and is defined as: 

 

 2

1

(
1

)i i

n

i

MSE
n

y y


    (13) 

 

The MSE was calculated between the observed minimum 
DO for a particular day, and the minimum value of the sampled 
Bayesian results or the fuzzy interval (i.e. when μ = 0). This is 
done specifically to assess the efficacy of each model to predict 
extreme values. 

 

4. Results and Discussion 

4.1. Model Performance Comparison 

Both the BLR and FLR models were sequentially calibre-  

ted using data from 2004 to 2013 (i.e. models M01 to M09) at 
four different lags (d = 1, 2, 3 and 7 days). Figure 2a shows the 
evolution of the regression coefficients calculated using the 
BLR method, as more data is added into the system for the 1 
day lag case. The value of σ2 (i.e. 1/τ) decreases with each sub- 
sequent year of added data, while β0 increases and remains rela- 
tively unchanged. Figure 2b, c and d show the evolution of the 
approximate density function of the regression coefficients and 
variance of the Normal model. As more data is added, the sp- 
read of each parameter decreases: this clearly demonstrates the 
functionality of a Bayesian approach to data analysis. The un- 
certainty in parameter estimates is decreasing as more data is 
added to the system. This figure illustrates the utility of using a 
Bayesian method: the non-informative prior used influences 
the estimates of the coefficients (e.g. M02) since the variance 
is high. Note that this would not be possible using a non-Baye- 
sian, i.e. ordinary linear regression, approach. 

Figure 3 shows the fuzzy regression coefficients calcula- 
ted using FLR. The results are similar to the BLR coefficient 
results: β0 increases with more data (Figure 3a), while β1 decre- 
ases (Figure 3b). However, a notable difference between the 
two is that in the fuzzy case, the spread of the regression coeffi- 
cient increases as data is added into the system, whereas in the 
BLR case, the variance of the coefficients reduces. For example, 
the range of β0 for the FLR M09 case is between 0 and 3, and 
is between 0.15 and 0.4 for the BLR case. This illustrates that 
as more data in included in the BLR model the coefficients tend 
to get more "precise", whereas the FLR coefficients increase in 
width to accommodate the full extent of variability seen in the 
data used to calibrate the model. The impact of this major struc- 
tural difference between the two modelling approaches is dis-
cussed below. 

Figure 4 shows selected results for the validation data for 
the 1 day lag case, for model M01 (2005 data used for valida- 
tion), M04 (2008 data used for validation) and M09 (2013 data 

Figure 2. Evolution of the BLR parameters: (top) the change in mean values of the two coefficients and the variance; (bottom) 
change in the approximate pdf of the variables for three cases. 
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used for validation). Each subplot shows the trend of the obser- 
ved daily mean DO, and the daily minimum and maximum con- 
centration. In addition to this, the figures shows the minimum 
and maximum sampled data for the BLR model results, and the 
fuzzy interval at μ = 0 for the FLR model results. For both cases, 
the mean observed DO generally falls within the predicted 
intervals for each case. The figure shows that both models can 
capture the observed trend with only one year’s worth of data. 
This has an important implication for numerical modelling, 
namely, that using data-driven methods means that a physical 
system can be adequately characterized using only one year’s 
worth of data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Evolution of the FLR coefficients for the 1-day lag 
and resolution = 96 case, shown here for the three cases. 

 
Another notable difference between the two methods is 

that while the variance of the BLR predictions is generally con-
stant, the fuzzy interval increases and decreases along with 
changes to the observed variance. For example, starting in June 
2005 for M01, the observed minimum and maximum interval 
decrease and the fuzzy interval reduces to match this change, 
but the BLR interval is not as flexible. In M04, the observed 
variability increases at the end of June 2004 and the fuzzy inter-

val increases to match this change, whereas the BLR interval 
stays more-or-less constant throughout this change. Similar 
trends can be seen for M09, especially at the end of the season 
when the observed variance increases in October 2013, with the 
fuzzy intervals matching this change.  

The impact of selecting a non-informative prior for M01 
and independent priors for M04 and M09 is also demonstrated 
in Figure 4. In M01, generally speaking, the size of the BLR 
interval is larger, reflecting the relative “lack of knowledge” 
after implementing only one year of data. This interval decrea- 
ses as more data is added, as seen for the M04 and M09 cases. 
Similar results were seen for the models constructed at other 
lags – results for these models are summarized via the perfor- 
mance metrics discussed later. 

Figure 5 shows a selection of observed versus predicted 
DO results for the three models discussed above for the 1 day 
lag case. These figures highlight that in general, the fuzzy 
predictions (represented by the grey boxes) overlap the 1:1 line 
for more cases than the BLR intervals (plotted as black lines) 
(see Figure 5a -c). This figure also shows a plot of lagged-DO 
versus DO for the observed, BLR and FLR predicted datasets 
(see Figure 5d - f). These figures again highlight clearly that 
unlike the BLR results, the FLR results (shown as intervals) 
increase or decrease to reflect the change in observed varia- 
bility, and are thus, better at capturing both the lower or upper 
daily DO values, along with the daily mean DO. The BLR re- 
sults meanwhile show a narrowing of the predicted intervals as 
the size of the dataset increases. In addition to this, unlike the 
typical OLR case, the FLR intervals are independent of the mag- 
nitude of dependent variable.  

The error metrics for each model are summarized in Figure 
6 to assess model performance. Figure 6a, d, and g show the 
NSE, RSR and PBIAS results for all models, M01 – M09 for 
the 1 day lag and 96 point resolution case. These metrics were 
only calculated at the mean value in the BLR intervals (where 
the performance was highest and decreased significantly at the 
extreme values of the intervals), and at each of the five mem- 
bership levels considered for the FLR case. In general, the per- 
formance is high for each of the nine models, using both meth- 
ods, with NSE values above 0.65, RSR values below 0.6 and 
PBIAS below 5%. Using the rating system developed by Mori- 
asi et al. (2007), these values fall under “good”, “good” and 
“very good”, respectively. As more data is added, the perfor-
mance improves slightly (M05 onwards). In all cases, the BLR 
metric falls within the fuzzy interval, meaning comparable effi- 
cacy with respect to these metrics.  

Similar trends are seen as the lag is increased (only shown 
for the M09 96 point resolution case, see Figure 6b, e, and h). 
The NSE is “good” for the first 3 lags, but falls to “satisfactory” 
(fuzzy) and non-satisfactory (Bayesian) for the 7 day lag case. 
The RSR slightly increases (i.e. lower performance) as the lag 
is increased from ~0.5 (“good”) to ~0.6 (“satisfactory”); with 
the mean value of the Bayes results performing slightly better 
than the fuzzy results. The change in PBIAS for the M09 case 
was not significant; with performance classified as “very good” 
(< 10%) for all cases.  
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Figure 4. Trend plots for validation results for M01, M04 and M09 for the 1-day lag, resolution = 96 case. 
 

Figure 5. (top): A comparison of (top) observed vs. predicted daily DO concentration for the BLR and FLR cases; and (bottom) 
observed (dots), BLR (black lines) and FLR results (triangles for µ= 0). 
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Figure 6. A summary of the three performance metrics for each model; the marker represents the mean BLR results, and the lines 
represent the FLR interval results. 

 
Lastly, Figure 6c, f and i shows the results of the final eva- 

luation of both BLR and FLR methods: the amount of data used 
to construct each model was decreased from 96 samples per 
day (i.e. sampling every 15 minutes), to 24 samples per day, to 
finally 6 samples per day (or every 4 hours). The results are 
shown only for the M09 1 day lag case. The primary objective 
of this test was to see the impact of input data resolution on 
performance for both methods. The NSE does not show a mark- 
ed change as the resolution is reduced for either method, with 
a value at 0.75 (“very good”). The change in RSR is also mini- 
mal: it stays at 0.5 “good” for the mean Bayes results and at 0.65 
(“satisfac- tory”) for the best fuzzy results. However, a decrease in 
the fuzzy interval is seen for the RSR results, meaning the variance 
in results decreases: a result of using less data. The value of PBIAS 
does not changed markedly as the resolution is decreased, gene- 
rally less than 1% (“very good”) for both methods. The PBIAS  

 
interval for the fuzzy results decreases as the resolution is decr- 
eased, again reflecting lower variance with the decreased data 
set. The results in Figure 6 are only shown for one case – results 
for all other model cases follow the same pattern and are inclu- 
ded in the Supplementary Material.  

The significance of the results pertaining to the data reso- 
lution is the limited effectiveness or utility in increasing sampling 
rates for real-time, water quality monitoring stations for water 
quality prediction. Similar results are seen for the 96 samples per 
day and 6 samples per day case. This suggests that it might be 
more prudent to sample a number of locations along a river, 
rather than sampling at high resolutions at one location. The 
difference between the two sampling rates means that for the 
same computer storage capacity, 16 locations can be samp led 
at 6 samples per day rather than one location at 96 samples per 
day. 
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In terms of changes to the lag time, while performance de- 
creased slightly as lag time was increased, both modelling app- 
roaches were still able to provide meaningful predictions of 
daily DO. This suggests, that an approach that uses multiple 
lags as predictors can be used by water resource managers in 
Calgary, to determine the risk of low DO up to a week in ad-
vance. Both approaches provide similar performance levels with 
respect to these metrics; the important differences between the 
two are discussed in the next section.  

 

4.2. Low DO Analysis 

One of the reason for predicting daily DO in the Bow 
River is to focus on the risk of low DO. For the given dataset, 
days where observed DO was measured to be below 6.5 mg/L 
(used as a reference for low DO in this research) were isolated; 
a total of 142 occurrences of low DO were recorded between 
2005 and 2013 (with the most occurrences in 2006, which had 
67 of these days). Using only the validation results from the 
1 day lag, 96 resolution model, the ability of each model to 
capture the observed minima within the predicted intervals 
was calculated.  

For 80 out of the 142 cases (about 56%), the minima fell 
within both the Bayesian (minimum and maximum sampled 
values) and fuzzy (at μ = 0) intervals. This is illustrated in 
Figure 7a, where the observed minimum DO is plotted along 
with the lower bounds of the predicted intervals. For these ca- 
ses, the MSE between the lower limit of the predicted interval 
and the observed minimum was calculated. The MSE for the 
fuzzy case was much lower (0.55 vs. 8.75) than the Bayesian 
MSE. This means that the FLR method is better at predicting 
low DO. In addition to this, for 54 out of the 142 cases (~38%), 
the observed minimum fell within the fuzzy interval but outside 
the Bayesian interval, i.e. the Bayesian case over-predicted the 
minimum. For these cases (as seen in Figure 7b) the MSE for 
the fuzzy case was 0.32 compared to an MSE of 23.28 for the 
Bayesian case. This shows that for this particular river, the FLR 
method can capture more of the low DO events than the BLR 
case, and predicts them with higher accuracy.  

There were also three cases where both methods over-
predicted the observed minimum (see Figure 7c); however, 
even in this case, the fuzzy results were much closer to the 
observed minima than the BLR case (as reflected by the lower 
MSE of 5.02 versus 36.53 for the Bayesian case). Lastly, for 
four cases the Bayesian interval captured the low DO within its 
interval, while the fuzzy interval over-predicted the minimum 
value. However, even for these cases where the fuzzy interval 
is unable to capture the low DO, the MSE value is still much 
lower, about four times compared to the Bayesian case (see Fig- 
ure 7d): 1.12 for FLR compared to 4.52 for BLR. 

Thus, in all four possible scenarios, the FLR models are 
more accurate (i.e. much lower MSE) compared to the BLR 
models. The FLR is also able to capture more of the low DO 
events, 134 out of 142 events, whereas the BLR only captured 
84.  

The ability of the fuzzy method to capture the observed 

minimum within its prediction intervals can be further highli-
ghted using an inverse transformation. This transformation was 
used to calculate the probabilityܲሺܦ෪ܱ ൏ min	ሺܱܦ௢௕௦ሻሻ, i.e. the 
probability that the FLR predicted DO will have a possi- bility 
of being lower than the observed minimum for that day. This 
probability highlights the conservative nature of the fuzzy 
predictions in contrast to the Bayesian results which indicate 
zero probability of DO being lower than the observed minimum. 
For these 54 cases, the average probability is 4.06% that the pr- 
edicted DO will be below the observed, whereas the BLR 
results indicate that the predicted DO will be exclusively above 
the observed minimum. Figure 8 shows three examples of this 
inverse transformation for days in 2005 and 2006. These figu- 
res show that the Bayesian interval does not capture some of 
the low DO observations, whereas the fuzzy number results ful- 
ly encompasses the observations, and in addition to this pro- 
vides estimates of being lower than the observed values (be-
tween 7.8 and 11% for these three cases).  

Figure 7. Observed minimum DO compared BLR and FLR (at 
μ = 0) results; (a) when both methods capture the minimum 
value, (b) when only the FLR interval captures the minimum; 
(c) when neither captures the minimum; (d) when only the BLR 
interval captures the minimum. 

 

The same inverse transformation along with the predic- 
ted fuzzy numbers can be used to highlight the generic risk of 
low DO. For example, if a “warning level” is set at 6.5 mg/L, 
then the inverse transformation can determine the probability: 
ܲሺܦ෪ܱ ൏ 6.5	mg/Lሻ. This probability can be used by water re- 
source managers to initiate risk management systems. For exa- 
mple, if the numerical model predicts a 15% chance of low DO,  
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Figure 8. Results of the inverse transformation showing the risk of low DO for the observed (grey), BLR (dashed) and FLR (solid) 
results. 

 

with a one-day lead, the water resource manager can start to 
take precautionary steps to limit this possibility. This inverse 
transformation was conducted on a subset of the 142 cases wh- 
ere low DO occurred: days where the Bayesian model predicted 
DO to be above 6.5 mg/L and where the fuzzy model predicted 
DO to be below 6.5 mg/L, a total of 24 cases. On average for 
this subset, the fuzzy predictions showed an 8% chance that the 
predicted DO on a particular day would be below the warning 
level. And in comparison, the Bayes method did not predict DO 
to be below 6.5 mg/L. Thus, apart from providing low DO pre- 
dictions with a much lower MSE, the fuzzy number method has 
another advantage that it can provide the probability (risk) of 
low DO events as part of its predictions. The figure below sho- 
ws three examples of these cases, where the probability of low 
DO was between 10 and 13%.  

 

 

5. Conclusions 

In this research, an autoregressive type approach was ta- 
ken to predict DO concentration in the Bow River in Calgary, 
Canada. Two regression models, a Bayesian and a fuzzy linear 
regression model were constructed for a number of different 
scenarios (four different lags, three different input resolutions). 
In addition to this, the modelling approach adopted a recursive 
algorithm to mimic a real-time prediction model. In general, the 
results show that both approaches provide good or very good 
predictions of daily DO, showing the utility of using data-driven 
modelling in a complex urban environment. In fact, only using 
one year of data to calibrate the model (M01) showed very 
good validation results, thus, illustrating that the data-driven 
approach can represent the physical system with even a relati- 

 

Figure 9. Results of the inverse transformation showing the risk of low DO for the observed (grey), BLR (dashed) and FLR (solid 
with dots) results, along with the warning level at 6.5 mg/L (solid).
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vely small dataset. This is a useful approach for water resource 
managers in many jurisdictions, given the simplicity of the model 
and ease of collecting real-time data, and can be easily extended 
to other water quality parameters.  

The use of different lag times to predict DO showed that 
very good short term predictions are possible using both regre- 
ssion approaches, though performance decreases as the lag is 
increased to seven days. The influence of changing the input 
resolution showed that the performance of either model did not 
change significantly. This suggests that high resolutions (96 
samples per day) are not necessary to calibrate the system when 
equivalent results can be achieved at lower resolutions (6 
samples per day).  

The utility of the fuzzy method was demonstrated by ana- 
lysing the ability of each model to predict low DO events. The 
fuzzy method captured more low DO events within its predic- 
ted interval compared to the Bayesian method, and did so with 
much lower MSE values. Inverse transformations to convert 
fuzzy predictions to probability based method showed that the 
fuzzy method can predict risk of low DO when the Bayesian 
method could not, thus, showing a useful application for water 
resource managers.  
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