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ABSTRACT. Accurate assessment of air pollution exposure is crucial to better public health. Routine monitoring is done by standardized 
Air Quality Monitoring (AQM) stations, which are spread thinly due to size and cost. Recent technological developments have made 
Wireless Distributed Environmental Sensor Networks (WDESNs) that consist of low-cost Micro Sensing Units (MSUs) feasible. These 
MSUs can be spread more densely and provide higher spatial resolution data. The availability of MSUs, however, poses the challenge of 
selecting optimal sensors’ locations. Previous attempts assumed prior knowledge on pollution levels in the region of interest, and 
considered MSUs which measured only one pollutant. This paper presents a scheme for finding an optimal deployment of heterogeneous 
WDESN, which is based only on MSUs characteristics and land use analysis. To this end, a set of optional deployment locations (OLs) 
is defined. Each OL is characterized by a set of utilities of placing the various MSUs in that location. The optimization process seeks for 
the set of locations, under budget and resources constraints, that maximizes the overall utility. Using the suggested method leads to an 
intelligent deployment under a set of given premises. This is demonstrated vs. a real-world deployment scenario, with multiple types of 
MSUs. 
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1. Introduction 

Air pollution is well known as a contributing factor to va-
rious health outcomes, and has been associated with public hea-
lth risks (Straif et al., 2015). Any study aiming at evaluating the 
impact of air quality on health, must assess accurately the am-
bient concentrations of different air pollutants. Up until recent-
ly, ambient pollutant concentrations were obtained solely by two 
methodologies: either short-termed measurement campaigns, u-
sing a large number of monitoring devices (Crouse et al., 2009), 
or based on routine measurements reported by standard Air Qu-
ality Monitoring (AQM) stations (Pope et al., 2002). These two 
approaches are inherently limited; the short-term campaign re-
presents only the limited time-span when monitoring took pla-
ce, and might fail to describe variations throughout longer pe-
riods of time, while the routine monitoring is both general, typi-
cally measures only criteria pollutants, as determined by the lo-
cal authorities (Bishoi et al., 2009), and is limited in its ability 
to represent a large area (Moltchanov et al., 2015). This limita-
tion arises from AQM stations’ operational demands, as an ex- 
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tensive set of procedures is required to maintain a satisfactory 
quality of monitoring data. These procedures (i.e. calibration, 
maintenance and data validation) result in high fiscal and ope-
rational cost, thus decreasing the number of AQM stations in 
use. As a result, the AQM stations array data does not fully re-
present pollution levels in heterogeneous regions such as urban 
areas, which in return, renders exposure assessment as a very 
difficult task (Rao et al., 2012). Moreover, the standards that 
regulate AQM stations mandate the sampling to take place high 
above the ground. Thus, AQMs often misrepresent the true ex-
posure of any individual at nose height. 

Recent developments in sensory and communication tech-
nologies have made the deployment of portable and relatively 
low-cost Micro Sensing Units (MSUs) feasible. These MSUs 
operate as independent nodes, or may be interconnected to form a 
Wireless Distributed Environmental Sensor Network (WDE-
SN), to cover larger area. WDESNs gather high-resolution spatial 
and temporal data, enabling the generation of dense pollution 
maps via interpolation. These maps are closer to real-life pollu-
tion dispersion scenarios, thus enabling a better exposure asse-
ssment (Kanaroglou et al., 2005). Recent studies that evaluated 
MSUs in laboratory and field trials show that these units are 
relatively less accurate compared to standard laboratory equip-
ment or AQM stations, however they do capture air pollution 
spatio-temporal variability effectively (Becker et al., 2000; Lee 
and Lee, 2001; Mead et al., 2013; Williams et al., 2013; Piedra-
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hita et al., 2014; Lerner et al., 2015; Moltchanov et al., 2015). 
Recent work by Fishbain et. al. (2017) suggest a new observa-
tion on quality assessment of MSUs, not only by absolute po-
llutant values, but also by the MSUs compatibility to various 
uses. Thus, the topic of accuracy is dealt with, allowing further 
use of these MSUs for monitoring campaign and exposure asse-
ssment. 

As mentioned above, MSUs have two major advantages 
over AQM stations: their small form factor and lower cost. This 
combination, which enables the deployment of a wide-area W-
DESN, raises a new question: what deployment plan would ser-
ve best the monitoring purposes? Unlike AQM stations, which 
require a dedicated location (roof top of a large structure, empty 
lot, etc.), MSUs can be placed on a balcony, street light, street 
sign and almost everywhere. However, as low-cost as the MS-
Us might be, budget is still a limited resource. Thus, a manda-
tory step in WDESN deployment design is the decision where 
to place the MSUs constituting the WDESN. While this pla-
cement decision is a critical component in any WDESN design 
and deployment, many studies avoid this important question 
(Barrenetxea et al., 2008). 

The problem of choosing optimal deployment locations 
for WDESN is not new and can be found in many environmen-
tal applications. Zhang and Liu (2012) cover several approach-
es to this problem, and describe the challenges in WDESN opti-
mization as follows; increase the coverage area, enhance net-
work connectivity, prolong the network lifetime, balance the 
load and improve the accuracy of the data. As the majority of 
MSUs in use these days are independent units, transmitting the 
data directly to a centralized computer (Fishbain et al., 2017), 
out of all these topics we are left only with coverage area and 
data accuracy as key components. 

Optimal environmental sensing of a region of interest 
(ROI) was suggested for disaster area investigation by mobile 
sensors (Kim et al., 2010) and for optimal coverage under ener-
gy consumption restrictions through turning off some the sen-
sor nodes in an alternating fashion (Xing et al., 2005; Kim et 
al., 2010). In ecology studies, optimal sensors placement is sou-
ght through an optimization of animal activity coverage (Gar-
cia-Sanchez et al., 2010; Akbarzadeh et al., 2013). All these 
studies, however, do not regard the observed area characteris-
tics; thus, the optimal coverage is achieved through an optimi-
zation mechanism that is solely based on sensors’ characteris-
tics. The suitability of a given sensor to a specific location is 
not considered in the optimization schemes. Another limitation 
that these studies present, and many others, is that they address 
homogenous sensor network, i.e. all sensors are space invariant 
and present the same accuracy and suitability in all possible lo-
cations. As the ROI itself presents variation in space, this assu-
mption typically does not hold.  

Kanaroglou et. al. address the problem of deploying a net-
work of air quality monitors for exposure assessment (NO2 as 
a single pollutant) (Kanaroglou et al., 2005). Their design is 
based on an initial estimation of pollution levels in the desired 
region based on data from monitoring stations, combined with 

land use analysis (roads as pollution source, among other pa-
rameters), as means to create a “Demand surface”, representing 
the locations where a monitoring station is needed most. To this 
demand, they add a second level of specification by incorpora-
ting interest groups, e.g. specific socio-demographic characteris-
tics that they wish to focus on (e.g. school area). By solving the 
problem for the above conditions, using Location-Allocation 
algorithm ( Modak and Lohani, 1985; Trujillo-Ventura and Hu-
gh Ellis, 1991; Sarigiannis and Saisana, 2008), they estimate the 
best locations to place their WDESN nodes. This work is limi-
ted in few major aspects: First, it is based on an initial estima-
tion of pollution levels in the desired region. Although they li-
mit their deployment area, their demand surface is based on a 
much larger region, for the sole purpose of obtaining data from 
a larger number of existing AQM stations. This limits their me-
thod only to regions where monitoring campaigns were held, 
and sufficient data is available. Second, when solving the pro-
blem, all of the WDESN’s nodes are isotropic in nature, i.e. 
they measure with the same accuracy. Furthermore, the entire 
solution is based on a single pollutant. As both AQM stations 
and MSU nodes measure a set of pollutants, each presents a 
different spatio-temporal pattern due to different sources and 
atmospheric reactions (Hastie et al., 1996; Berkowicz et al., 
2006; Jerrett et al., 2007), solving the problem only for one of 
them leads to a sub-optimal solution for the other pollutants. A 
proper solution should regard all of the measured values. 

Bhattacharya et. Al. (2010) suggested a different approach, 
that partially solved the isotropy and single pollutant problems. 
They defined both the Quality of Monitoring (QoM), which in-
dicates the level of accuracy or compatibility of a sensor to a 
set of purposes, and a utility function, that balances the benefit 
of the QoM with network demands (load, communication cost, 
etc.). However, all nodes are de-fined based on the same QoM, 
thus, it is assumed that the WDESN is composed of a single ty-
pe of sensors. Due to differences in sensor technology, outer 
case design, sampling resolution, etc., different types of MSUs 
are found to function at different levels of accuracy and relia-
bility on various environmental conditions (Mead et. al., 2013; 
Moltchanov et. al., 2015). Moreover, one MSU type may be be-
tter suited to measure NO and CO (that present at higher con-
centrations near their origin, mostly traffic), while other MSU 
types are more accurate measuring ozone (O3), a secondary po-
llutant, found mostly farther from pollution sources. WDESN 
consists of different types of MSU must utilize a decision me-
chanism that regards the differrent characteristics of the MSUs. 
Also, as stated above, when working with MSUs, the decision 
does not have to regard a single set of performance charac-
teristics for a specific type, and it should assign specific, indivi-
dual QoM set of characteristics to each sensor, as the single 
units are independent in that nature. 

Carter and Ragade proposed a probabilistic model for pla-
cement of sensors in a WDESN, based on the probability of de-
tection per each sensor, and an optimization schemes that en-
sures desired level of detection at minimal cost (Carter and Ra-
gade, 2009). Here, they suggest a method that differentiate sen-
sor types, by means of different detection probabilities. Howe-
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ver, as air quality is not an “event” to detect, but a dynamic cha-
racter of the environment one wishes to monitor constantly, and 
in the entire region, this method will not be suitable. Similarly, 
Chakrabarty et. al. (2002) presented a scheme for surveillance 
and target location (over a grid), with support for different sen-
sor types. However, again, no regard is given to the character-
ristics of the deployment region besides distances between grid 
points. This is a crucial topic when examining a chemophysical 
phenomenon as air pollution, with various sources and environ-
mental pathways. 

This paper describes a new, general approach to optimally 
deploy a WDESN composed of various types of MSUs in an 
urban area, based only on MSU characteristics and land use 
analysis of the defined region, with no prior knowledge on po-
llutant concentrations. Solving this optimization problem re-
sults in a detailed map of deployment locations. The problem 
definition is flexible and enable customization based on the de-
fined region, to better comply with specific conditions. Using 
the suggested method to choose deployment locations leads to 
a fruitful deployment, where the best possible monitoring re-
sults are obtained under a set of given premises.  

2. Materials and Methods 

2.1. Instrumentation 
In this study, two types of MSUs were used: (1) GeoTech’s 

AQMesh pods (AQMesh, 2017); and (2) Perkin Elmer’s ELM 
units (Perkin-Elmer, 2017). These two MSUs present different 
capabilities in monitoring urban air pollution. The ELM unit is 
weather resistant, AC powered MSU, which consists of two se-
miconducting metal-oxide gas sensors, measuring O3 and NO2, 
sampling for every 20 seconds. O3 data is averaged over 60 se-
conds, before transmission to a remote server. These units also 
measure atmospheric pressure (AP), local temperature and total 
suspended particles. The ELM MSU was reported to present 
accurate O3 measurement that capture well intra-neighborhood 
spatiotemporal variability ( Lerner et al., 2015; Moltchanov et 
al., 2015). 

The second set of the sensors is the battery-powered, Ge-
oTech’s AQmesh. Here, the sensing pods are electrochemical, 
measuring NO, NO2 and O3, along with AP and temperature, 
where sampling is taken every 15 minutes before data is trans-
mitted back. Some of the AQmesh units also include an optical 
counter for particulate matter (PM2.5 and PM10). The AQmesh 
units were reported to accurately measure NO ambient levels 
and correctly report PM spatial patterns (Fishbain et. al., 2017). 

The ELM MSU measures O3 at a relatively high accuracy, 
however it lacks in its ability to correctly indicate levels of NO2. 
Thus, it is less suited to monitor traffic-related pollution at its 
source (i.e. near major roads or busy commercial areas), and 
better suited to be placed in Near-Residential Open Spaces 
(NROSs), to monitor secondary pollutants levels. On the Other 
hand, the AQMesh MSU presents relatively accurate NO and 
CO measurements, also measuring PM, and thus it should be 
placed near major roads or combustion-related pollution sour-
ces (i.e. roads, industrial centers, dense residential districts, 
etc.), hence, Traffic-Residential Regions (TRRs). 

2.2. Study Regions 
Two regions were chosen to test the suggested method. 

The first is an area in the city of Hadera, in the central costal 
plane of Israel (see Figure 1a and zoomed in section in Figure 
1b). This area composes of a combination of TRRs, including 
two major highways, NROSs, and also a hospital and a power 
plant. Thus, it demonstrates various pollution sources and vast 
deployment options. This makes this area an interesting site to 
monitor the behavior of air pollution emitted from those sour-
ces, and a good testing ground for our algorithm. Few combina-
tions of the formulation parameters and constraints are explo-
red so the best approach for an optimal solution is found. 

The other case study is Citi Sense project (CITI-SENSE 
Project, 2017) air pollution sensors deployment in the city of 
Haifa. Haifa is a port city, which resides on the northern part of 
the Israeli coast of the Mediterranean Sea (Figure 1c). Cur-
rently, a few dozen MSUs are deployed at Neve Sha’anan, a 
residential neighborhood, located on a relatively leveled region 
of the Carmel Ridge, about 200 m Above Sea Level. The neigh-
borhood is roughly divided by a major road (Trumpeldor Ave.), 
which also serves as the main commercial center for the resi-
dents of this area. Haifa region deployment was solved under 
several configurations, starting with the entire region (all theo-
retical optional locations, OLs) and zeroing into the current de-
ployment sites. This approach aims at comparing the optimal 
solution to that obtained by trial and error, or human decisions. 
The complete process is described in the results section. 

 

  
Figure 1. The study regions. 

 
2.3. Problem Definition  
2.3.1. Deployment Considerations 

Previous studies that aimed at optimally deploy air quality 
monitors, defined the study area as a continuous surface (e.g. 
Kanaroglou et al., 2005), and calculated the optimal deploy-
ment locations as a grid of nodes in pre-defined distance from 
one another. Here, we took a different approach; after choosing 
our deployment region, we define the set , which consists of 
n catchments or “Optional Locations” (henceforth termed OLs), 
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where an MSU can be placed. As the deployment region, can 
vary in size or shape, the defined OLs are flexible in their re-
lative locations throughout the region.  

The OLs in the study region differ in their characteristics; 
these include their relative position on the grid (i.e. peripheral 
vs central location) and their function (i.e. land-use, is there a 
road in that location or an open area). As described earlier, the 
two types of MSUs used in this study demonstrate different 
characteristics; An ELM unit is better suited for Near-Residen-
tial Open Spaces (NROSs), while AQMesh is preferable in Tra-
ffic-Residential Regions (TRRs). These differences are expre-
ssed in our design as the Suitability (S) of placing each MSU 
type at a given OL, due to its advantages (or disadvantages). 
The suitability is defined on a scale of zero to one, where zero 
indicates that the MSU is completely ineffective or not required 
at that location, while one will be given to a location best suited 
for the specific type of MSU. The suitability measure is a repre-
sentation of the OLs land-use, and its implication on MSU pla-
cement. Figure 2a demonstrates a sample suitability matrix for 
an AQMesh MSU, at a sample region map. For the sake of 
simplicity, all OLs in this example are spread as a square grid 
of n OLs, with an equal distance between two neighboring loca-
tions. Each position on the 2D-grid is described by a single co-
ordinate, termed i, where i ∈ {1, 2, …, n}. This region includes 
several major highways (routes 2, 4 and 65), a NROS and some 
residential centers. As the AQMesh MSU is better suited for 
measuring pollutants originating from TRRs, the suitability is 
higher along the major roads and lower between them. 

In addition to the suitability, two other sets of parameters 
are defined for any OL. The first parameter is the rank (r), indi-
cating the number of neighboring OLs this location has. Assu-
ming that the correlation between two adjacent OLs is relative-
ly high (Moltchanov et al., 2015), a single MSU may cover mo-
re than its close surroundings, and thus, a more central location 
will provide accurate monitoring for a wider area. To illustrate, 
in the example of Figure 2, an OL located in the corner of the 
grid has 3 neighboring locations, while a central one has 8. The-
se values are normalized to the scale of zero to one, to match 
that of the suitability, as demonstrated in Figure 2b. 

 

  
Figure 2. Utility (U) composing matrices of a sample region; 
(a) Suitability (S) matrix, for a traffic-oriented MSU; (b) rank 
(r) (normalized number of neighboring OLs). 
 
2.3.2. Decision Variables and Objective Function  

The problem at hand is solved by defining an objective 
function, aimed at maximizing the utility of the deployed 

MSUs. To this end, each OL is represented by two (or more if 
there are more types of sensors) binary decision variables,  ix
and yi, that indicate whether an MSU of a given type (x or y, re-
presenting AQMesh and ELM, respectively) is located in that 
OL. For example, 1 1x = indicates that an AQMesh MSU is pla-
ced in catchment number 1. If 1 0x = then an AQMesh sensor 
should not be placed in that catchment.  

Let x
iS and y

iS be the suitability of a given OL in , for the 
MSU of type X and Y, respectively, and ir  the rank of the same 
OL, then the contribution of having any MSU in that location 
will be defined by i ixx y

i i i irS rS y+ . Summing for all OLs in , 
we get the following term, describing the complete contribution 
of all deployed MSUs: 

 

i ix yx y
i i i i

i i

rS rS
 

+   (1) 

  
Constraints. We define here that each OL can support at 

most one MSU. This might arise from physical limitations (e.g. 
placing the MSU on a street light with minimal space), limited 
budget or other reasons. Thus, for the entire grid, we define that 
at each location, only one decision variable might be equal 1: 

 

𝑥𝑖 + 𝑦𝑖 ≤ 1, ∀ 𝑖 (2) 
 
In addition, there are locations where an MSU cannot be 

deployed (e.g. ocean, restricted access areas, etc.), and others 
where a mandatory deployment is in order (declared fixed posi-
tions). For this end, these specific cases are represented in the 
constraints as 1,y 0i ix = = , or vice versa.  

There is also a budget constraint, and to solve that we limit 
the number of MSU deployed, by assigning a cost of a single 
MSU of any type to the parameters xC and yC for the AQMesh 
and ELM units respectively. The total cost is then limited by 
the following constraint: 

 

  x y
i i

i i

C x C y total availablebudget
 

+    (3) 

 
Quite often the budget constraint is not in the form of mo-

netary terms, but in the form of available sensors. The latter 
may be the case, for example, when one has a set of sensors 
and he seeks for an optimal deployment for this set. To acco-
mmodate for this, the budget constraint of Equation (3) can be 
replaced with a set of constraints limiting the maximum num-
ber from each sensor type: 

 
 

i x
i

x maximum


  

 

i y
i

y maximum


  

(4-1) 

(4-2) 
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It is important to note that the constraints of Equation (3) 
and Equation (4) can be applied concurrently, where any subset 
of Equation (4) can be applied independently from the others, 
i.e. limiting the number of sensors of a single type.  

To enhance the flexibility of the algorithm, we tested seve-
ral options to influence the scattering of the solution’s chosen 
OLs, by applying optional constraints on the deployment. The 
first is the use of Anchor sites (As). These anchors are intended 
to force the algorithm to deploy several MSUs at fixed posi-
tions on the grid, regardless of the utility. These anchors are 
defined using the terminology set by Equation (2). Anchor lo-
cations can also be used for a functional purpose (Af) and not 
just for scattering, e.g. a location where we want a sensor to be 
deployed. A good example is a known pollution source, where 
we want to place an MSU that measures the released pollutant. 
Another example is an area of high interest, a hospital for exa-
mple, where exposure analysis is most important for the well-
being of the patients (Jerrett et al., 2007).  

An alternative approach for governing the scattering pat-
terns of deployed MSUs is to define an occupancy (O) function, 
which mandates the presence of MSUs in any given subsection 
of  . To this end, let us define a set of subsections   , 
which may intersect, i.e. for arbitrary ωa and ωb in  , the in-
tersection, ωa ⋂ ωb, may not be the empty set. Using these nota-
tion, the constraint is formulated as follows: 

 
∑ 𝑥𝑎 ≥ 1,𝑎∈𝜔𝑙

 ∀ 𝜔𝑙 ⊂ 𝛺  
  

 
∑ 𝑦𝑎𝑎∈𝜔𝑙

≥ 1, ∀ 𝜔𝑙 ⊂ 𝛺  

(5-1) 
 

(5-2) 
 
Figure 3 illustrates this concept, where   is divided into 

squared grid and ωl are all 3 × 3 neighborhoods, within . 
 
2.3.3. Mathematical Formulation 

Summarizing the sections above, using the notation sum-
marized in Table 1, the complete problem is formulated as fol-
lows: 
 

i iMax x y
n

x y
i i i i

i i

DS rS rS
 

= +        (6-1) 

. .s t                                          

  x y
i i

i i

C x C y total availablebudget
 

+      (6-2) 

 

i x
i

x maximum


        (6-3) 

 

i y
i

y maximum


        (6-4) 

     , 0,1i ix y         (6-5) 

  
Figure 3. Occupancy measure; Four 3 × 3 sub-grids of a 5 × 5 
grid (out of 9 available). 

 
Examining the above DS problem (Equation (6)), it is cle-

ar that one can characterize the MSUs by cost and utility, and 
the deployment area by its constraints. Thus, the DS problem 
is essentially the knapsack problem (Kellerer et al., 2004), with 
binary decision variables and linear constraints. The knapsack 
problem is NP-Complete (Karp, 1972), thus there isn’t a known 
method to solve the problem efficiently. 

Here the DS problem is solved as a Mixed-Integer Linear 
Problem (Mixed-ILP). To this end, Matlab® and IBM CPLEX 
OPTIMIZER (IBM, 2015; MathWorks, 2015) were used. CPL-
EX solves this type of problems using a heuristic approach, 
combining simplex (to identify optimal solution) and Branch & 
Bound to find the binary values (Lima, 2010). Hardware used 
was a self-assembled PC with Windows 7®OS, running an In-
tel Multi-core processor and 16 GB RAM. 

3. Results and Discussion 

3.1. Hadera Case Study 
For the city of Hadera, utility matrices were defined for 

both aforementioned MSU types (Figure 4): 

Table 1. Definitions of Mathematical Symbols Used throughout Equations (1) to (6) 
Symbol Definition 
Ω Set of catchments (OL’s) compromising deployment area 
ω (ωl ϵ Ω) Subsection of set Ω 
{Six}, {Siy} ϵ {0..1} Suitability of OLi for MSU of type X or Y, respectively, based on land-use 
ri ϵ {0..1} Rank of OLi, indicating normalized number of neighboring OLs 
{xi}, {yi} ϵ {0..1} Indicates presence of MSU of type x or y, respectively, in OLi 
Cx and Cy Cost of MSUs of types x and y 

xa and ya (where a ϵ ωl) Indicates presence of MSU of type x or y, respectively, in any OLi (i ϵ a) within a defined subsection of Ω. Used to 
calculate the Occupancy measure. 
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First, the problem is solved using solely the occupancy 
measure to avoid extreme centrality of the result. As seen in 
Figure 5a, this resulted in a deployment, which takes into ac-
count the highway that crosses this region, and covers the 
NROS’s. The problem was solved in less than a minute. It is 
also clear that the AQMesh and ELM units are placed correctly 
in TRR and NROS area respectively. There is still one noti-
ceable problem, sea areas, which are not feasible location, have 
been included in   and two MSUs (one of each type) were ac-
tually placed in the Mediterranean Sea. This problem can be 
solved either by forcing the decision variable of placing a sen-
sor in a sea region to have a zero, i.e. no sensor, value, or by re-
moving this location from  . It is important to note that these 
two solutions differ as the latter solution also alters the occu-
pancy measures. Figure 5b illustrates, the former, where the 
functionality of Equation (2), which forces the decision varia-
bles in sea areas to be zero. Indeed, the deployment of Figure 
5b presents good coverage and adequacy of MSUs to land-use 
characteristics. Computation time for both solutions was less 
than 1 second. 
 
3.2. Haifa Case Study 

Next, the suggested approach is tested in the city of Haifa, 
where an actual deployment exists. Figure 6a depicts an aerial 
photo of the deployment region, which is 1.6 × 1.6 km in size 
(1 squared mile). The region is divided into 10 × 10 grid of equ-
al sized OLs (Figure 6b). Utility matrices are created for both 
types of MSUs. The problem is solved, limiting the maximum 
amount of MSUs available (Equation (4)); This was designed 
to represent the actual inventory. As seen in Figure 7, the solu-
tions do cover the region efficiently, providing a good adap-
tation of the different types of MSUs to the land use characters.  

Increasing the maximum number of available units (from 

12 in Figure 7a, to 15, 20 and 25 in Figures 7b to 7d, respecti-
vely), do improve the coverage while maintaining the basic 
principles: more AQmesh units along major roads and in resi-
dential areas while ELM units are concentrated in the less 
densely populated domains. 

 

  
Figure 5. Optimal deployment in Hadera, entire region. Blue 
crosses: ELM units; red x: GT units. (a) S, r, O, Af; (b) S, r, O, 
Af, no_sensors_at_sea. 

 
To show the flexibility of the method, the solution of Fi-

gure 7 is repeated, where the placement of a sensor is restricted 
to OLs where an MSU is currently deployed. The current dep-
loyment was designed based on various considerations, both 
physical and demographic, thus it might be sub-optimal. Sol-
ving for the same number of OLs enables a comparison to the 
suggested optimal solution of our algorithm. When comparing 
the actual and optimal deployments, the difference is clearly 
noticeable. The optimal solution distributes the MSUs based on 
their contribution to the total monitoring quality (Figure 8a), 

 Figure 4. Suitability (S) matrices for theoretical study region (Hadera, Israel). (a) ELM MSU; (b) AQMesh MSU. 
(a) (b) 
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where the different types match the region’s characters. How-
ever, the actual deployment didn’t take these considerations in-
to account, thus placing the MSUs in a manner that might lead 
to erroneous measurements and a less accurate exposure asse-
ssment (Figure 8b). Moreover, when removing the limitation 
on MSU number, we see that we better place an uneven number 
of units, 18 AQmesh and 12 ELM in total, to maximize the mo-
nitoring quality (Figure 8c). Computation time for all solutions 
was less than 1 second, each. 

 

  
Figure 6. Case study region (Haifa, Israel). (A) region only; (B) 
OLs, 10 × 10 grid. 
 

  
Figure 7. Optimal deployment in Haifa case study. Blue cro-
sses: ELM units; red x: GT units; Maximum MSUs (per type): 
(a) 12; (b) 15; (c) 20 (d) 25. 
 

  
Figure 8. Optimal vs. actual deployment in Haifa case study. 
Blue crosses: ELM units; red x: GT units. (a) 15 MSUs of ea-
ch type, optimal; (b) 15 MSUs of each type, actual; (c) Opti-

mal deployment, no limitations. 

4. Conclusions 

The new algorithm, presented here, aims at finding the 
best deployment locations for air quality micro sensing units, 
deployed in a mixed residential or open area region. With the 
increasing number of air-quality monitoring networks deplo-
yed globally, arises the need to properly choose deployment 
locations to increase the WDESN monitoring potential. Previ-
ous attempts aimed at this goal didn’t regard the unique charac-
teristics of MSUs, when compared to standard AQM stations, 
thus leading to a limited solution. 

As demonstrated here, both in the theoretical sense and 
when compared to a real case study of a functioning monitoring 
network, the above algorithm supplies an extremely fast, flexi-
ble solution, easily implemented in different regions and with 
a wide array of possible limitations and setups. This approach 
might also be extended for a 3-dimensional deployment sche-
me (Chakrabarty et al., 2002; Carter and Ragade, 2009), for the 
purpose of air-quality monitoring near high buildings and dense 
populated areas. This is a complex deployment scenario that is 
usually solvable using complex Computational Fluid Dyna-
mics (CFD) models and limited sensor deployments (Woo et 
al., 2016). 

Using this method, one can design the best possible de-
ployment based on existing knowledge (available MSU types, 
cost, land use data of the desired region, etc.), and use this 
solution to avoid logistical problems throughout his deploy-
ment. Thus, this approach saves time, money, while maxim-
izing the efficiency of the final, deployed WDESN.  

Once a WDESN is deployed based on this approach, fur-
ther techniques might be used to verify how well MSUs loca-
tions fit the deployment region (i.e. how efficient is the cov-
erage, and does it represent the entire region), for example, by 
a random placement of MSUs in un-assigned locations, and 
comparison of the measured results with adjacent, assigned 
MSUs. This analysis can be performed using common methods 
for spatiotemporal correlation analysis in WSNs (e.g. Vuran et 
al., 2004; Pham et al., 2010; Villas et al., 2013; Almeida et al., 
2017). 
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