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ABSTRACT. Accurate assessment of air pollution exposure is crucial to better public health. Routine monitoring is done by standardized
Air Quality Monitoring (AQM) stations, which are spread thinly due to size and cost. Recent technological developments have made
Wireless Distributed Environmental Sensor Networks (WDESNS) that consist of low-cost Micro Sensing Units (MSUs) feasible. These
MSUs can be spread more densely and provide higher spatial resolution data. The availability of MSUs, however, poses the challenge of
selecting optimal sensors’ locations. Previous attempts assumed prior knowledge on pollution levels in the region of interest, and
considered MSUs which measured only one pollutant. This paper presents a scheme for finding an optimal deployment of heterogeneous
WDESN, which is based only on MSUs characteristics and land use analysis. To this end, a set of optional deployment locations (OLs)
is defined. Each OL is characterized by a set of utilities of placing the various MSUs in that location. The optimization process seeks for
the set of locations, under budget and resources constraints, that maximizes the overall utility. Using the suggested method leads to an
intelligent deployment under a set of given premises. This is demonstrated vs. a real-world deployment scenario, with multiple types of

MSUs.
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1. Introduction

Air pollution is well known as a contributing factor to va-
rious health outcomes, and has been associated with public hea-
Ith risks (Straif et al., 2015). Any study aiming at evaluating the
impact of air quality on health, must assess accurately the am-
bient concentrations of different air pollutants. Up until recent-
ly, ambient pollutant concentrations were obtained solely by two
methodologies: either short-termed measurement campaigns, u-
sing a large number of monitoring devices (Crouse et al., 2009),
or based on routine measurements reported by standard Air Qu-
ality Monitoring (AQM) stations (Pope et al., 2002). These two
approaches are inherently limited; the short-term campaign re-
presents only the limited time-span when monitoring took pla-
ce, and might fail to describe variations throughout longer pe-
riods of time, while the routine monitoring is both general, typi-
cally measures only criteria pollutants, as determined by the lo-
cal authorities (Bishoi et al., 2009), and is limited in its ability
to represent a large area (Moltchanov et al., 2015). This limita-
tion arises from AQM stations’ operational demands, as an ex-
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tensive set of procedures is required to maintain a satisfactory
quality of monitoring data. These procedures (i.e. calibration,
maintenance and data validation) result in high fiscal and ope-
rational cost, thus decreasing the number of AQM stations in
use. As a result, the AQM stations array data does not fully re-
present pollution levels in heterogeneous regions such as urban
areas, which in return, renders exposure assessment as a very
difficult task (Rao et al., 2012). Moreover, the standards that
regulate AQM stations mandate the sampling to take place high
above the ground. Thus, AQMs often misrepresent the true ex-
posure of any individual at nose height.

Recent developments in sensory and communication tech-
nologies have made the deployment of portable and relatively
low-cost Micro Sensing Units (MSUs) feasible. These MSUs
operate as independent nodes, or may be interconnected to form a
Wireless Distributed Environmental Sensor Network (WDE-
SN), to cover larger area. WDESNS gather high-resolution spatial
and temporal data, enabling the generation of dense pollution
maps via interpolation. These maps are closer to real-life pollu-
tion dispersion scenarios, thus enabling a better exposure asse-
ssment (Kanaroglou et al., 2005). Recent studies that evaluated
MSUs in laboratory and field trials show that these units are
relatively less accurate compared to standard laboratory equip-
ment or AQM stations, however they do capture air pollution
spatio-temporal variability effectively (Becker et al., 2000; Lee
and Lee, 2001; Mead et al., 2013; Williams et al., 2013; Piedra-
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hita et al., 2014; Lerner et al., 2015; Moltchanov et al., 2015).
Recent work by Fishbain et. al. (2017) suggest a new observa-
tion on quality assessment of MSUs, not only by absolute po-
Ilutant values, but also by the MSUs compatibility to various
uses. Thus, the topic of accuracy is dealt with, allowing further
use of these MSUs for monitoring campaign and exposure asse-
ssment.

As mentioned above, MSUs have two major advantages
over AQM stations: their small form factor and lower cost. This
combination, which enables the deployment of a wide-area W-
DESN, raises a new question: what deployment plan would ser-
ve best the monitoring purposes? Unlike AQM stations, which
require a dedicated location (roof top of a large structure, empty
lot, etc.), MSUs can be placed on a balcony, street light, street
sign and almost everywhere. However, as low-cost as the MS-
Us might be, budget is still a limited resource. Thus, a manda-
tory step in WDESN deployment design is the decision where
to place the MSUs constituting the WDESN. While this pla-
cement decision is a critical component in any WDESN design
and deployment, many studies avoid this important question
(Barrenetxea et al., 2008).

The problem of choosing optimal deployment locations
for WDESN is not new and can be found in many environmen-
tal applications. Zhang and Liu (2012) cover several approach-
es to this problem, and describe the challenges in WDESN opti-
mization as follows; increase the coverage area, enhance net-
work connectivity, prolong the network lifetime, balance the
load and improve the accuracy of the data. As the majority of
MSUs in use these days are independent units, transmitting the
data directly to a centralized computer (Fishbain et al., 2017),
out of all these topics we are left only with coverage area and
data accuracy as key components.

Optimal environmental sensing of a region of interest
(ROI) was suggested for disaster area investigation by mobile
sensors (Kim et al., 2010) and for optimal coverage under ener-
gy consumption restrictions through turning off some the sen-
sor nodes in an alternating fashion (Xing et al., 2005; Kim et
al.,2010). In ecology studies, optimal sensors placement is sou-
ght through an optimization of animal activity coverage (Gar-
cia-Sanchez et al., 2010; Akbarzadeh et al., 2013). All these
studies, however, do not regard the observed area characteris-
tics; thus, the optimal coverage is achieved through an optimi-
zation mechanism that is solely based on sensors’ characteris-
tics. The suitability of a given sensor to a specific location is
not considered in the optimization schemes. Another limitation
that these studies present, and many others, is that they address
homogenous sensor network, i.e. all sensors are space invariant
and present the same accuracy and suitability in all possible lo-
cations. As the ROI itself presents variation in space, this assu-
mption typically does not hold.

Kanaroglou et. al. address the problem of deploying a net-
work of air quality monitors for exposure assessment (NO; as
a single pollutant) (Kanaroglou et al., 2005). Their design is
based on an initial estimation of pollution levels in the desired
region based on data from monitoring stations, combined with

land use analysis (roads as pollution source, among other pa-
rameters), as means to create a “‘Demand surface”, representing
the locations where a monitoring station is needed most. To this
demand, they add a second level of specification by incorpora-
ting interest groups, e.g. specific socio-demographic characteris-
tics that they wish to focus on (e.g. school area). By solving the
problem for the above conditions, using Location-Allocation
algorithm ( Modak and Lohani, 1985; Trujillo-Ventura and Hu-
¢h Ellis, 1991; Sarigiannis and Saisana, 2008), they estimate the
best locations to place their WDESN nodes. This work is limi-
ted in few major aspects: First, it is based on an initial estima-
tion of pollution levels in the desired region. Although they li-
mit their deployment area, their demand surface is based on a
much larger region, for the sole purpose of obtaining data from
a larger number of existing AQM stations. This limits their me-
thod only to regions where monitoring campaigns were held,
and sufficient data is available. Second, when solving the pro-
blem, all of the WDESN’s nodes are isotropic in nature, i.e.
they measure with the same accuracy. Furthermore, the entire
solution is based on a single pollutant. As both AQM stations
and MSU nodes measure a set of pollutants, each presents a
different spatio-temporal pattern due to different sources and
atmospheric reactions (Hastie et al., 1996; Berkowicz et al.,
2006; Jerrett et al., 2007), solving the problem only for one of
them leads to a sub-optimal solution for the other pollutants. A
proper solution should regard all of the measured values.

Bhattacharya et. Al. (2010) suggested a different approach,
that partially solved the isotropy and single pollutant problems.
They defined both the Quality of Monitoring (QoM), which in-
dicates the level of accuracy or compatibility of a sensor to a
set of purposes, and a utility function, that balances the benefit
of the QoM with network demands (load, communication cost,
etc.). However, all nodes are de-fined based on the same QoM,
thus, it is assumed that the WDESN is composed of a single ty-
pe of sensors. Due to differences in sensor technology, outer
case design, sampling resolution, etc., different types of MSUs
are found to function at different levels of accuracy and relia-
bility on various environmental conditions (Mead et. al., 2013;
Moltchanov et. al., 2015). Moreover, one MSU type may be be-
tter suited to measure NO and CO (that present at higher con-
centrations near their origin, mostly traffic), while other MSU
types are more accurate measuring ozone (Os), a secondary po-
llutant, found mostly farther from pollution sources. WDESN
consists of different types of MSU must utilize a decision me-
chanism that regards the differrent characteristics of the MSUs.
Also, as stated above, when working with MSUs, the decision
does not have to regard a single set of performance charac-
teristics for a specific type, and it should assign specific, indivi-
dual QoM set of characteristics to each sensor, as the single
units are independent in that nature.

Carter and Ragade proposed a probabilistic model for pla-
cement of sensors in a WDESN, based on the probability of de-
tection per each sensor, and an optimization schemes that en-
sures desired level of detection at minimal cost (Carter and Ra-
gade, 2009). Here, they suggest a method that differentiate sen-
sor types, by means of different detection probabilities. Howe-
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ver, as air quality is not an “event” to detect, but a dynamic cha-
racter of the environment one wishes to monitor constantly, and
in the entire region, this method will not be suitable. Similarly,
Chakrabarty et. al. (2002) presented a scheme for surveillance
and target location (over a grid), with support for different sen-
sor types. However, again, no regard is given to the character-
ristics of the deployment region besides distances between grid
points. This is a crucial topic when examining a chemophysical
phenomenon as air pollution, with various sources and environ-
mental pathways.

This paper describes a new, general approach to optimally
deploy a WDESN composed of various types of MSUs in an
urban area, based only on MSU characteristics and land use
analysis of the defined region, with no prior knowledge on po-
Ilutant concentrations. Solving this optimization problem re-
sults in a detailed map of deployment locations. The problem
definition is flexible and enable customization based on the de-
fined region, to better comply with specific conditions. Using
the suggested method to choose deployment locations leads to
a fruitful deployment, where the best possible monitoring re-
sults are obtained under a set of given premises.

2. Materials and Methods

2.1. Instrumentation

In this study, two types of MSUs were used: (1) GeoTech’s
AQMesh pods (AQMesh, 2017); and (2) Perkin Elmer’s ELM
units (Perkin-Elmer, 2017). These two MSUs present different
capabilities in monitoring urban air pollution. The ELM unit is
weather resistant, AC powered MSU, which consists of two se-
miconducting metal-oxide gas sensors, measuring O3 and NO»,
sampling for every 20 seconds. O3 data is averaged over 60 se-
conds, before transmission to a remote server. These units also
measure atmospheric pressure (AP), local temperature and total
suspended particles. The ELM MSU was reported to present
accurate O3z measurement that capture well intra-neighborhood
spatiotemporal variability ( Lerner et al., 2015; Moltchanov et
al., 2015).

The second set of the sensors is the battery-powered, Ge-
oTech’s AQmesh. Here, the sensing pods are electrochemical,
measuring NO, NO; and O3, along with AP and temperature,
where sampling is taken every 15 minutes before data is trans-
mitted back. Some of the AQmesh units also include an optical
counter for particulate matter (PM»s and PMp). The AQmesh
units were reported to accurately measure NO ambient levels
and correctly report PM spatial patterns (Fishbain et. al., 2017).

The ELM MSU measures Oj at a relatively high accuracy,

however it lacks in its ability to correctly indicate levels of NO,.

Thus, it is less suited to monitor traffic-related pollution at its
source (i.e. near major roads or busy commercial areas), and
better suited to be placed in Near-Residential Open Spaces
(NROSs), to monitor secondary pollutants levels. On the Other
hand, the AQMesh MSU presents relatively accurate NO and
CO measurements, also measuring PM, and thus it should be
placed near major roads or combustion-related pollution sour-
ces (i.e. roads, industrial centers, dense residential districts,
etc.), hence, Traffic-Residential Regions (TRRs).
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2.2. Study Regions

Two regions were chosen to test the suggested method.
The first is an area in the city of Hadera, in the central costal
plane of Israel (see Figure 1a and zoomed in section in Figure
1b). This area composes of a combination of TRRs, including
two major highways, NROSs, and also a hospital and a power
plant. Thus, it demonstrates various pollution sources and vast
deployment options. This makes this area an interesting site to
monitor the behavior of air pollution emitted from those sour-
ces, and a good testing ground for our algorithm. Few combina-
tions of the formulation parameters and constraints are explo-
red so the best approach for an optimal solution is found.

The other case study is Citi Sense project (CITI-SENSE
Project, 2017) air pollution sensors deployment in the city of
Haifa. Haifa is a port city, which resides on the northern part of
the Israeli coast of the Mediterranean Sea (Figure 1c). Cur-
rently, a few dozen MSUs are deployed at Neve Sha’anan, a
residential neighborhood, located on a relatively leveled region
of the Carmel Ridge, about 200 m Above Sea Level. The neigh-
borhood is roughly divided by a major road (Trumpeldor Ave.),
which also serves as the main commercial center for the resi-
dents of this area. Haifa region deployment was solved under
several configurations, starting with the entire region (all theo-
retical optional locations, OLs) and zeroing into the current de-
ployment sites. This approach aims at comparing the optimal
solution to that obtained by trial and error, or human decisions.
The complete process is described in the results section.

Israel

Figure 1. The study regions.
2.3. Problem Definition

2.3.1. Deployment Considerations

Previous studies that aimed at optimally deploy air quality
monitors, defined the study area as a continuous surface (e.g.
Kanaroglou et al., 2005), and calculated the optimal deploy-
ment locations as a grid of nodes in pre-defined distance from
one another. Here, we took a different approach; after choosing
our deployment region, we define the set ), which consists of
n catchments or “Optional Locations” (henceforth termed OLs),
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where an MSU can be placed. As the deployment region, can
vary in size or shape, the defined OLs are flexible in their re-
lative locations throughout the region.

The OLs in the study region differ in their characteristics;
these include their relative position on the grid (i.e. peripheral
vs central location) and their function (i.e. land-use, is there a
road in that location or an open area). As described earlier, the
two types of MSUs used in this study demonstrate different
characteristics; An ELM unit is better suited for Near-Residen-
tial Open Spaces (NROSs), while AQMesh is preferable in Tra-
ffic-Residential Regions (TRRs). These differences are expre-
ssed in our design as the Suitability (S) of placing each MSU
type at a given OL, due to its advantages (or disadvantages).
The suitability is defined on a scale of zero to one, where zero
indicates that the MSU is completely ineffective or not required
at that location, while one will be given to a location best suited
for the specific type of MSU. The suitability measure is a repre-
sentation of the OLs land-use, and its implication on MSU pla-
cement. Figure 2a demonstrates a sample suitability matrix for
an AQMesh MSU, at a sample region map. For the sake of
simplicity, all OLs in this example are spread as a square grid
of' n OLs, with an equal distance between two neighboring loca-
tions. Each position on the 2D-grid is described by a single co-
ordinate, termed i, where i € {1, 2, ..., n}. This region includes
several major highways (routes 2, 4 and 65), a NROS and some
residential centers. As the AQMesh MSU is better suited for
measuring pollutants originating from TRRs, the suitability is
higher along the major roads and lower between them.

In addition to the suitability, two other sets of parameters
are defined for any OL. The first parameter is the rank (r), indi-
cating the number of neighboring OLs this location has. Assu-
ming that the correlation between two adjacent OLs is relative-
ly high (Moltchanov et al., 2015), a single MSU may cover mo-
re than its close surroundings, and thus, a more central location
will provide accurate monitoring for a wider area. To illustrate,
in the example of Figure 2, an OL located in the corner of the
grid has 3 neighboring locations, while a central one has 8. The-
se values are normalized to the scale of zero to one, to match
that of the suitability, as demonstrated in Figure 2b.

1 05 Nt 2 0 04 0.4 0
~ A
1 05 0.5 1 04 1 1 0.4
1 05 05 1 0.4 1 1 04
g1 05 s | Fo 0.4 04 | Cp
f

(a) (b)
Figure 2. Utility (U) composing matrices of a sample region;

(a) Suitability (S) matrix, for a traffic-oriented MSU; (b) rank
(r) (normalized number of neighboring OLs).

2.3.2. Decision Variables and Objective Function

The problem at hand is solved by defining an objective
function, aimed at maximizing the utility of the deployed

MSUs. To this end, each OL is represented by two (or more if
there are more types of sensors) binary decision variables, x,
and y;, that indicate whether an MSU of a given type (x or y, re-
presenting AQMesh and ELM, respectively) is located in that
OL. For example, x, =1 indicates that an AQMesh MSU is pla-
ced in catchment number 1. If x, =0 then an AQMesh sensor
should not be placed in that catchment.

Let S and S, be the suitability of a given OL in Q, for the
MSU of type X and Y, respectively, and 7, the rank of the same
OL, then the contribution of having any MSU in that location
will be defined by 7.Sx; + .S}y, . Summing for all OLs in Q,
we get the following term, describing the complete contribution
of all deployed MSUs:

2SIx+ 278!y, M

ieQ ieQ

Constraints. We define here that each OL can support at
most one MSU. This might arise from physical limitations (e.g.
placing the MSU on a street light with minimal space), limited
budget or other reasons. Thus, for the entire grid, we define that
at each location, only one decision variable might be equal 1:

X +y <LVi )

In addition, there are locations where an MSU cannot be
deployed (e.g. ocean, restricted access areas, etc.), and others
where a mandatory deployment is in order (declared fixed posi-
tions). For this end, these specific cases are represented in the
constraints as x, =1,y, =0, or vice versa.

There is also a budget constraint, and to solve that we limit
the number of MSU deployed, by assigning a cost of a single
MSU of any type to the parameters C* and C” for the AQMesh
and ELM units respectively. The total cost is then limited by
the following constraint:

ZC X, + ZC "y, <total availablebudget 3)

ieQ ieQ

Quite often the budget constraint is not in the form of mo-
netary terms, but in the form of available sensors. The latter
may be the case, for example, when one has a set of sensors
and he seeks for an optimal deployment for this set. To acco-
mmodate for this, the budget constraint of Equation (3) can be
replaced with a set of constraints limiting the maximum num-
ber from each sensor type:

in < maximum, (4-1)
ieQ
ny < maximum, 4-2)

ieQ
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Table 1. Definitions of Mathematical Symbols Used throughout Equations (1) to (6)

Symbol Definition

Q Set of catchments (OL’s) compromising deployment area

o (o€ Q) Subsection of set O

{S*}, {Si*} € {0..1} Suitability of OL; for MSU of type X or Y, respectively, based on land-use
rie {0..1} Rank of OL,;, indicating normalized number of neighboring OLs

{xi}, {yi} € {0..1} Indicates presence of MSU of type x or y, respectively, in OL;

C*and CY Cost of MSUs of types x and y

Xaand ya (where a € @) calculate the Occupancy measure.

Indicates presence of MSU of type x or y, respectively, in any OL; (i € a) within a defined subsection of Q. Used to

It is important to note that the constraints of Equation (3)
and Equation (4) can be applied concurrently, where any subset
of Equation (4) can be applied independently from the others,
i.e. limiting the number of sensors of a single type.

To enhance the flexibility of the algorithm, we tested seve-
ral options to influence the scattering of the solution’s chosen
OLs, by applying optional constraints on the deployment. The
first is the use of Anchor sites (4;). These anchors are intended
to force the algorithm to deploy several MSUs at fixed posi-
tions on the grid, regardless of the utility. These anchors are
defined using the terminology set by Equation (2). Anchor lo-
cations can also be used for a functional purpose (4y) and not
just for scattering, e.g. a location where we want a sensor to be
deployed. A good example is a known pollution source, where
we want to place an MSU that measures the released pollutant.
Another example is an area of high interest, a hospital for exa-
mple, where exposure analysis is most important for the well-
being of the patients (Jerrett et al., 2007).

An alternative approach for governing the scattering pat-
terns of deployed MSUs is to define an occupancy (O) function,
which mandates the presence of MSUs in any given subsection
of Q. To this end, let us define a set of subsections {a)} cQ,
which may intersect, i.e. for arbitrary w, and w, in Q, the in-
tersection, w, N @;, may not be the empty set. Using these nota-
tion, the constraint is formulated as follows:

Yacw Xa =1, Vo, c (5-D)

Zaewlya =21V w; © 0 (5'2)

Figure 3 illustrates this concept, where Q is divided into
squared grid and w; are all 3 x 3 neighborhoods, within Q .

2.3.3. Mathematical Formulation

Summarizing the sections above, using the notation sum-
marized in Table 1, the complete problem is formulated as fol-
lows:

Max DS = 1S'x, + Y 75y, (6-1)
ieQ ieQ
s.t.
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ZC “x, + ZC "y, <total available budget (6-2)
i€Q ieQ)

Zx,. < maximum, (6-3)
ieQ

Zyl. < maximum, (6-4)
ieQ

{xjo{ntelon (6-5)

Figure 3. Occupancy measure; Four 3 x 3 sub-grids ofa 5 x 5
grid (out of 9 available).

Examining the above DS problem (Equation (6)), it is cle-
ar that one can characterize the MSUs by cost and utility, and
the deployment area by its constraints. Thus, the DS problem
is essentially the knapsack problem (Kellerer et al., 2004), with
binary decision variables and linear constraints. The knapsack
problem is NP-Complete (Karp, 1972), thus there isn’t a known
method to solve the problem efficiently.

Here the DS problem is solved as a Mixed-Integer Linear
Problem (Mixed-ILP). To this end, Matlab® and IBM CPLEX
OPTIMIZER (IBM, 2015; MathWorks, 2015) were used. CPL-
EX solves this type of problems using a heuristic approach,
combining simplex (to identify optimal solution) and Branch &
Bound to find the binary values (Lima, 2010). Hardware used
was a self-assembled PC with Windows 7®0S, running an In-
tel Multi-core processor and 16 GB RAM.

3. Results and Discussion

3.1. Hadera Case Study

For the city of Hadera, utility matrices were defined for
both aforementioned MSU types (Figure 4):
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Figure 4. Suitability (S) matrices for theoretical study region (Hadera, Israel). (a) ELM MSU; (b) AQMesh MSU.

First, the problem is solved using solely the occupancy
measure to avoid extreme centrality of the result. As seen in
Figure 5a, this resulted in a deployment, which takes into ac-
count the highway that crosses this region, and covers the
NROS’s. The problem was solved in less than a minute. It is
also clear that the AQMesh and ELM units are placed correctly
in TRR and NROS area respectively. There is still one noti-
ceable problem, sea areas, which are not feasible location, have
been included in Q and two MSUs (one of each type) were ac-
tually placed in the Mediterranean Sea. This problem can be
solved either by forcing the decision variable of placing a sen-
sor in a sea region to have a zero, i.e. no sensor, value, or by re-
moving this location from Q. It is important to note that these
two solutions differ as the latter solution also alters the occu-
pancy measures. Figure 5b illustrates, the former, where the
functionality of Equation (2), which forces the decision varia-
bles in sea areas to be zero. Indeed, the deployment of Figure
5b presents good coverage and adequacy of MSUs to land-use
characteristics. Computation time for both solutions was less
than 1 second.

3.2. Haifa Case Study

Next, the suggested approach is tested in the city of Haifa,
where an actual deployment exists. Figure 6a depicts an aerial
photo of the deployment region, which is 1.6 x 1.6 km in size
(1 squared mile). The region is divided into 10 x 10 grid of equ-
al sized OLs (Figure 6b). Utility matrices are created for both
types of MSUs. The problem is solved, limiting the maximum
amount of MSUs available (Equation (4)); This was designed
to represent the actual inventory. As seen in Figure 7, the solu-
tions do cover the region efficiently, providing a good adap-
tation of the different types of MSUs to the land use characters.

Increasing the maximum number of available units (from

12 in Figure 7a, to 15, 20 and 25 in Figures 7b to 7d, respecti-
vely), do improve the coverage while maintaining the basic
principles: more AQmesh units along major roads and in resi-
dential areas while ELM units are concentrated in the less
densely populated domains.

X >3 ¥ + X X
+ + x X + x 4+ X
+ |+ ] x + + x
y + X + X + | X +
+ + b e + | X
+ X + + 4+ X x
X X + X [, S ¢ +
+ + % X + x X

(@) (b)
Figure 5. Optimal deployment in Hadera, entire region. Blue
crosses: ELM units; red x: GT units. (a) S, 1, O, Af; (b) S, 1, O,
Af, no_sensors_at sea.

To show the flexibility of the method, the solution of Fi-
gure 7 is repeated, where the placement of a sensor is restricted
to OLs where an MSU is currently deployed. The current dep-
loyment was designed based on various considerations, both
physical and demographic, thus it might be sub-optimal. Sol-
ving for the same number of OLs enables a comparison to the
suggested optimal solution of our algorithm. When comparing
the actual and optimal deployments, the difference is clearly
noticeable. The optimal solution distributes the MSUs based on
their contribution to the total monitoring quality (Figure 8a),
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where the different types match the region’s characters. How-
ever, the actual deployment didn’t take these considerations in-
to account, thus placing the MSUs in a manner that might lead
to erroneous measurements and a less accurate exposure asse-
ssment (Figure 8b). Moreover, when removing the limitation
on MSU number, we see that we better place an uneven number
of units, 18 AQmesh and 12 ELM in total, to maximize the mo-
nitoring quality (Figure 8c). Computation time for all solutions
was less than 1 second, each.

Figure 6. Case study region (Haifa, Israel). (A) region only; (B)
OLs, 10 x 10 grid.

(b)

(d)

Figure 7. Optimal deployment in Haifa case study. Blue cro-

sses: ELM units; red x: GT units; Maximum MSUs (per type):
(a) 12; (b) 15; (c) 20 (d) 25.

Figure 8. Optimal vs. actual deployment in Haifa case study.
Blue crosses: ELM units; red x: GT units. (a) 15 MSUs of ea-
ch type, optimal; (b) 15 MSUs of each type, actual; (c) Opti-
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mal deployment, no limitations.

4. Conclusions

The new algorithm, presented here, aims at finding the
best deployment locations for air quality micro sensing units,
deployed in a mixed residential or open area region. With the
increasing number of air-quality monitoring networks deplo-
yed globally, arises the need to properly choose deployment
locations to increase the WDESN monitoring potential. Previ-
ous attempts aimed at this goal didn’t regard the unique charac-
teristics of MSUs, when compared to standard AQM stations,
thus leading to a limited solution.

As demonstrated here, both in the theoretical sense and
when compared to a real case study of a functioning monitoring
network, the above algorithm supplies an extremely fast, flexi-
ble solution, easily implemented in different regions and with
a wide array of possible limitations and setups. This approach
might also be extended for a 3-dimensional deployment sche-
me (Chakrabarty et al., 2002; Carter and Ragade, 2009), for the
purpose of air-quality monitoring near high buildings and dense
populated areas. This is a complex deployment scenario that is
usually solvable using complex Computational Fluid Dyna-
mics (CFD) models and limited sensor deployments (Woo et
al., 2016).

Using this method, one can design the best possible de-
ployment based on existing knowledge (available MSU types,
cost, land use data of the desired region, etc.), and use this
solution to avoid logistical problems throughout his deploy-
ment. Thus, this approach saves time, money, while maxim-
izing the efficiency of the final, deployed WDESN.

Once a WDESN is deployed based on this approach, fur-
ther techniques might be used to verify how well MSUs loca-
tions fit the deployment region (i.e. how efficient is the cov-
erage, and does it represent the entire region), for example, by
a random placement of MSUs in un-assigned locations, and
comparison of the measured results with adjacent, assigned
MSUs. This analysis can be performed using common methods
for spatiotemporal correlation analysis in WSNs (e.g. Vuran et
al., 2004; Pham et al., 2010; Villas et al., 2013; Almeida et al.,
2017).
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